\(A=1+2^1+2^2+2^3+......+2^{2007}\)

a. Tính 2A

b. Chứng tỏ :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

Đề bài sai thay B thành A và đổi dấu bằng sau số 1 thành cộng.ô

a,        3A = 3 + 3^2 + 3^3 +......+ 3^2007

b,  3A - A = 3^2007 - 1 

           2A = 3^2007 - 1

             A = (3^2007 - 1) : 2

Vâỵ ...

4 tháng 10 2018

a,\(3B=3+3^2+3^3+...+3^{2007}\)

b\(do\)\(3^{2007},1\)LÀ SỐ LẺ NÊN HIỆU LÀ SỐ CHẴN CHIA HẾT CHO 2

1 tháng 2 2019

1/A=1.21.22.23.24.25                                                               câu 2 làm tương tự                                                            

A.2=2.22.23.24.25.26                                

A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)

A=26-1

3 A=1+3+32+33+...37

3.A=3+32+33+34...+38

2A=38-1

A=(38-1):2

14 tháng 12 2019

\(a.\) \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2.\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

\(b.\)Sai đề rồi, sửa lại:

Chứng minh: \(A=2^{2008}-1\)

C/m:    \(2A=2+2^2+2^3+2^4+...+2^{2008}\)

\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow A=2^{2008}-1\)\(\left(đpcm\right)\)

Theo mk lak vậy !

7 tháng 4 2017

Câu 1:

a) \(-\dfrac{2}{3}\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)

\(\Rightarrow-\dfrac{2}{3x}+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)

\(\Rightarrow\dfrac{2}{3}x+\dfrac{2}{3}x=\dfrac{1}{6}+\dfrac{1}{3}\)

\(\Rightarrow x.\left(\dfrac{2}{3}+\dfrac{2}{3}\right)=\dfrac{1}{2}\)

\(\Rightarrow x.\dfrac{4}{3}=\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{2}:\dfrac{4}{3}\)

\(\Rightarrow x=\dfrac{3}{8}\)

7 tháng 4 2017

lấy bài bd

17 tháng 6 2018

\(a,A=1+3+3^2+......+\)\(3^{2006}\)

\(\Rightarrow3A=3+3^2+3^3+......+3^{2007}\)

\(b,A=1+3+3^2+.....+3^{2006}\)

   \(3A=3+3^2+3^3+......+3^{2007}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+.....+3^{2007}\right)-\left(1+3+3^2+.....+3^{2006}\right)\)

    \(2A=3^{2007}-1\)

 \(\Rightarrow A=\left(3^{2007}-1\right):2\)

17 tháng 6 2018

a, 3A=3+3^2+3^3+...+3^2007

b, 3A-A=(3+3^2+3^3+..+3^2007)-(1+3+3^2+...+3^2006)

2A=3^2007-1

A=(3^2007-1):2 => đpcm

18 tháng 9 2017

a)Ta có: \(C=1+4+...+4^{100}\)

\(\Rightarrow4C=4+4^2+...+4^{101}\)

b) \(4C-C=\left(1+4+...+4^{100}\right)-\left(4+4^2+...+4^{101}\right)\)

\(3C=4^{101}-1\)

\(C=\frac{4^{101}-1}{3}=\left(4^{101}-1\right):3\)

16 tháng 6 2018

a, C = 1 + 4 + 42 + 43 + 44 + 45 + 46

   4C = 4 + 42 + 43 + 44 + 45 + 46 + 47

b, 4C - C = ( 4+42 + 43 + 44 +45 + 46 + 47 ) - ( 1 + 4 + 42 + 43 +44 +45 + 46 )

3C = 47 - 1

=> C = ( 47 - 1 ) : 3

16 tháng 6 2018

a) ta có: \(A=1+3+3^2+3^3+3^4+3^5+3^6+3^7\)

\(\Rightarrow3A=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)

\(\Rightarrow3A-A=3^8-1\)

\(2A=3^8-1\)

b) ta có: 2A = 38-1 ( phần a)

\(\Rightarrow A=\left(3^8-1\right):2\left(đpcm\right)\)