Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)
Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)
\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)
Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)
Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)
b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)
Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)
Vậy A > B
Có gì sai cho sorry
a,
\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)
b,
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
ÁP DỤNG CÔNG THỨC NẾU \(\frac{a}{b}\)>1 thì
\(\frac{a}{b}\)>\(\frac{a+m}{b+m}\)
Ta có : \(\frac{2012^{12}+1}{2012^{13}+1}\)>\(\frac{2012^{12}+1+2011}{2012^{13}+1+2011}\)=\(\frac{2012^{12}+2012}{2012^{13}+2012}\)=\(\frac{2012.\left(2012^{11}+1\right)}{2012.\left(2012^{12}+1\right)}\)
rồi rút gọn thành \(\frac{2012^{11}+1}{2012^{12}+1}=B\)
Vậy A>B
Nhớ cho mình đúng nha
Ta có:\(A=\dfrac{2012^{2012}+1}{2012^{2013}+1}\)
\(\Rightarrow2012.A=\dfrac{2012^{2013}+2012}{2012^{2013}+1}=\dfrac{2012^{2013}+1+2011}{2012^{2013}+1}=1+\dfrac{2011}{2012^{2013}+1}\)Ta có:\(B=\dfrac{2012^{2011}+1}{2012^{2012}+1}\)
\(\Rightarrow2012.B=\dfrac{2012^{2012}+2012}{2012^{2012}+1}=\dfrac{2012^{2012}+1+2011}{2012^{2012}+1}=1+\dfrac{2011}{2012^{2012}+1}\)Vì\(\dfrac{2011}{2012^{2013}+1}< \dfrac{2011}{2012^{2012}+1}\)
\(\Rightarrow1+\dfrac{2011}{2012^{2013}+1}< 1+\dfrac{2011}{2012^{2012}+1}\)
\(\Rightarrow\dfrac{2012^{2012}+1}{2012^{2013}+1}< \dfrac{2012^{2011}+1}{2012^{2012}+1}\)
Vậy A<B
Bài 1:
Ta có: \(A=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
Dễ thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< B=\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 2:
\(S=\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{37\cdot40}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{37\cdot40}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)=\dfrac{1}{3}\cdot\dfrac{9}{40}=\dfrac{3}{40}< \dfrac{1}{3}\)
Ta có
A=\(\dfrac{2011+2012}{2012+2013}\)=\(\dfrac{2011}{2012+2013}\)+\(\dfrac{2012}{2012+2013}\)(1)
B=\(\dfrac{2011}{2012}\)+\(\dfrac{2012}{2013}\)(2)
=>A>B
A lớn
B nhỏ
Mai Quỳnh
B = 2011/2012+2012/2013 > 2011/2013+ 2012/2013
= 2011+2012/2013>2011+2012/ 2012+2013
= A.
Vậy B>A
Ta có:\(A=\dfrac{2011+1012}{2012+2013}\)
\(A=\dfrac{2011}{4023}+\dfrac{2012}{4023}< \dfrac{2011}{2012}+\dfrac{2012}{2013}=B\)
=> A<B
Vậy A<B
Ta có: \(B=\frac{2011}{2012+2013+2014}+\frac{2012}{2012+2013+2014}+\frac{2013}{2012+2013+2014}\)
A= \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
Xét từng số hạng của A và B
\(\frac{2011}{2012}>\frac{2011}{2012+2013+2014}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013+2014}\)
\(\frac{2013}{2014}>\frac{2013}{2012+2013+2014}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}>\frac{2011+2012+2013}{2012+2013+2014}\)
\(\Rightarrow A>B\)
Đề bạn ghi có hơi sai chút nên tự tự sửa lại nha!
a. Ta có
\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)
Vì\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)
\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)
Cộng vế với vế của 1;2 ta được
\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)
hay A>B
Ta có :
\(A=1+2012+2012^2+2012^3+........+2012^{100}\)
\(2012A=2012+2012^2+2012^3+......+2012^{100}+2012^{101}\)
\(\Rightarrow2012A-A=\left(2012+2012^2+.......+2012^{101}\right)-\left(1+2012+........+2012^{100}\right)\)
\(2011A=2012^{101}-1\)
\(\Rightarrow A=\dfrac{2012^{101}-1}{11}\)
Mà \(B=\dfrac{2012^{101}}{2011}\)
\(\Rightarrow B-A=\dfrac{2012^{101}}{2011}-\dfrac{2012^{101}-1}{2011}\)
\(=\dfrac{2012^{101}-\left(2012^{101}-1\right)}{2011}\)
\(=\dfrac{2012^{101}-2012^{101}+1}{2011}\)
\(=\dfrac{1}{2011}\)
~ Chúc bn học tốt ~
Có: \(2012A=2012+2012^2+...+2012^{101}\)
=> \(2012A-A=\left(2012+2012^2+...+2012^{101}\right)-\left(1+2012+...+2012^{100}\right)\)
\(\Rightarrow2011A=2012^{101}-1\)
\(\Rightarrow A=\dfrac{2012^{101}-1}{2011}\)
Do đó \(B-A=\dfrac{2012^{101}}{2011}-\dfrac{2012^{101}-1}{2011}=\dfrac{1}{2011}\)