Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)\)
\(=\left(\sqrt{a^2+2011}\right)^2-a^2\)
\(=a^2+2011-a^2=2011\)
Nên : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)=2011\)
Mà theo bài ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}+b\right)=2011\)
Nên : \(\sqrt{a^2+2011}+b=\sqrt{a^2+2011}-a\) ( đpcm )
Câu 1:
\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)
\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)
Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)
\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)
Và do $a,b\geq 3$ nên:
\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)
\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)
Cộng tất cả những BĐT trên ta có:
\(A\geq 2+14+62+2=80\) (đpcm)
Dấu "=" xảy ra khi $a=b=3$
Câu 2:
Bình phương 2 vế ta thu được:
\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)
\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)
\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)
\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)
Do đó pt đã cho vô nghiệm.
Để cho gọn thì đặt \(\left\{{}\begin{matrix}2010-a=x\\2012-b=y\end{matrix}\right.\)
\(VT=\left|x\right|+\left|1+x\right|+\left|3+x\right|+\left|y\right|\)
\(VT=\left|-x\right|+\left|3+x\right|+\left|1+x\right|+\left|y\right|\)
\(VT\ge\left|-x+3+x\right|+\left|1+x\right|+\left|y\right|\)
\(VT\ge3+\left|1+x\right|+\left|y\right|\ge3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1+x=0\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2011\\b=2012\end{matrix}\right.\)
\(a^2-b^2=-4023\)
gt\(\Leftrightarrow\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
Vì \(x^2,y^2,z^2\ge0\) và các phép trừ trong ngoặc lớn hơn 0
nên x=y=z=0
=> M=0+0+0=0
Mashiro Shiina làm như đúng r :3