\(A=1^{2011}+2^{2011}+3^{2011}+...+2010^{2011}\) và \(B=\dfrac{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

Ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)\)

\(=\left(\sqrt{a^2+2011}\right)^2-a^2\)

\(=a^2+2011-a^2=2011\)

Nên : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)=2011\)

Mà theo bài ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}+b\right)=2011\)

Nên : \(\sqrt{a^2+2011}+b=\sqrt{a^2+2011}-a\) ( đpcm )

AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 1:

\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)

\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)

Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)

\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)

Và do $a,b\geq 3$ nên:

\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)

\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)

Cộng tất cả những BĐT trên ta có:

\(A\geq 2+14+62+2=80\) (đpcm)

Dấu "=" xảy ra khi $a=b=3$

AH
Akai Haruma
Giáo viên
17 tháng 1 2019

Câu 2:

Bình phương 2 vế ta thu được:

\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)

\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)

\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)

\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)

Do đó pt đã cho vô nghiệm.

NV
19 tháng 2 2020

Để cho gọn thì đặt \(\left\{{}\begin{matrix}2010-a=x\\2012-b=y\end{matrix}\right.\)

\(VT=\left|x\right|+\left|1+x\right|+\left|3+x\right|+\left|y\right|\)

\(VT=\left|-x\right|+\left|3+x\right|+\left|1+x\right|+\left|y\right|\)

\(VT\ge\left|-x+3+x\right|+\left|1+x\right|+\left|y\right|\)

\(VT\ge3+\left|1+x\right|+\left|y\right|\ge3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1+x=0\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2011\\b=2012\end{matrix}\right.\)

\(a^2-b^2=-4023\)

2 tháng 8 2019
https://i.imgur.com/Qbb60IV.jpg
16 tháng 6 2019

gt\(\Leftrightarrow\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

Vì \(x^2,y^2,z^2\ge0\) và các phép trừ trong ngoặc lớn hơn 0

nên x=y=z=0

=> M=0+0+0=0