Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
A = 119 + 118 + ... + 11 + 1
A = 119 + 118 + ... + 111 + 110
Dễ thấy: A là tổng của của 10 số hạng, mỗi số hạng là lũy thừa của 11 nên đều có tận cùng là 1
=> A có tận cùng là 0, chia hết cho 5 (đpcm)
A=119+118+...........+11+1+1
vì các số trong tổng 119+118+...........+11+1 +1 đều có số tận cùng là 1
các số hạng đều có tận cùng là 1
=>119+118+...........+11 có tận cùng là 9
=> A có tận cùng là 1 => không chia hết cho 5
=> đề sai hoạc ghi nhầm đề đề có thể là
119+118+...........+11+1
giải:
vì các số trong tổng 119+118+...........+11+1 đều có số tận cùng là 1
các số hạng đều có tận cùng là 1
=>119+118+...........+11 có tận cùng là 9
9+1=10 => A có tận cùng là 0 => chia hết cho 5
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
ta co' tinh chat cua luy thua cua 11 nhu sau:
So cuoi cung cua 11^x luon = 1.
Tu` do' ta de dang thay':A= 11^9+11^8+...+11+1 cac so hang deu co so tan cung = 1 va co 10 so hang do do' so' tan cung cua tong?
nay` la` 0. Vay A chia het cho 5.
Ta có:
A = (119 + 118 + 117 + 116 + 115) + (114 +113 + 112 + 11 + 1)
A = Chia hết cho 5 + Chia hết cho 5
=> A chia hết cho 5