K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PH
4
PN
14 tháng 2 2016
Đặt \(P=111...111222...222\), ta có:
\(P=111...111222...222\) (có \(100\) số \(1\) và \(100\) số \(2\) )
\(=111...111000...000+222...222\) (có \(100\) số \(1\), \(100\) số \(0\) và \(100\) số \(2\) )
\(=111...111.10^{100}+2.111...111\)
\(P=111...111\left(10^{100}+2\right)\)
Đặt \(111...111=k\), \(\Rightarrow\) \(9k=999...999\) (có \(100\) số \(9\) ) nên \(9k+1=1000...000=10^{100}\)
Do đó, \(P=k\left(9k+1+2\right)=k\left(9k+3\right)=3k\left(3k+1\right)\)
Mà \(3k\) và \(3k+1\) lại là \(2\) số tự nhiên liên tiếp nên suy ra điều phải chứng minh.
Ta thấy b=111...1(30 chữ số 1) chia hết cho 3
Vì tổng b = 1+1+...+1(30 số hạng 1) = 30 chia hết cho 3
Lại có a = 111...1(31 chữ số 1) chia cho 3 dư 1
=> ab chia 3 dư 1 <=> ab-2 chia hết cho 3