K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Ta có : \(\frac{1}{101}\) > \(\frac{1}{150}\)

            \(\frac{1}{102}\) > \(\frac{1}{150}\)

 .....................................................

             \(\frac{1}{149}\) > \(\frac{1}{150}\)

=> \(\frac{1}{101}\) + \(\frac{1}{102}\) + .......... + \(\frac{1}{150}\) > \(\frac{1}{150}\) + \(\frac{1}{150}\) + .......... +  \(\frac{1}{150}\)( có 50 p/s ) = \(\frac{1}{150}\) . 50 = \(\frac{1}{3}\)(1)

Ta lại có : \(\frac{1}{151}\) > \(\frac{1}{200}\)

                \(\frac{1}{152}\) > \(\frac{1}{200}\)

   ............................................

                 \(\frac{1}{199}\)\(\frac{1}{200}\)

=> \(\frac{1}{151}\) + \(\frac{1}{152}\) + .................. + \(\frac{1}{200}\) > \(\frac{1}{200}\)\(\frac{1}{200}\) + ...................+ \(\frac{1}{200}\)(có 50 p/ )=\(\frac{1}{200}\) . 50 = \(\frac{1}{4}\)(2)

Từ (1) và (2) 

=> \(\frac{1}{101}\)\(\frac{1}{102}\) + \(\frac{1}{103}\) + ...................+ \(\frac{1}{200}\)>  \(\frac{1}{3}\) + \(\frac{1}{4}\) = \(\frac{4}{12}\) + \(\frac{3}{12}\) = \(\frac{7}{12}\)

Vậy A > \(\frac{7}{12}\)

11 tháng 3 2017

caanf

12 tháng 5 2017

cái j đấy nhỉ????mk k hiểu?

2 tháng 8 2023

\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)

\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)

\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)

\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)

\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)

\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)

\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)

9 tháng 3 2020

bạn tham khảo link này

https://olm.vn/hoi-dap/detail/41711040592.html