Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{b}{7}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{a-b-c}{21-14-10}=\dfrac{-9}{-3}=3\)
Do đó: a=63; b=42; c=30
b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\)
Do đó: a=10; b=15; c=20
d: Đặt a/1=b/3=c/5=k
=>a=k; b=3k; c=5k
Ta có: abc=120
\(\Leftrightarrow15k^3=120\)
=>k=2
=>a=2; b=6; c=10
a: =31/9+31/6=155/18
b: =113/14-45/7=23/7
c: =7-3-6/7=4-6/7=24/7
Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)
\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)
\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)
Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)
2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)
Bài 2:
a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)
\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)
c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)
d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)
\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)
áp dụng công thức : \(sin^2\alpha+cos^2\alpha=1\)
ta có : \(P=3sin^2\alpha+4cos^2\alpha=3sin^2\alpha+3cos^2\alpha+cos^2\alpha\)
\(P=3\left(sin^2\alpha+cos^2\alpha\right)+\left(cos\alpha\right)^2=3\left(1\right)+\left(\dfrac{1}{2}\right)^2\)
\(P=3+\dfrac{1}{4}=\dfrac{13}{4}\)
vậy chọn đáp án \(C\)
áp dụng công thức : \(sin^2\alpha+cos^2\alpha=1\)
ta có : \(P=3sin^2\alpha+4cos^2\alpha=3sin^2\alpha+3cos^2\alpha+cos^2\alpha\)
\(P=3\left(sin^2\alpha+cos^2\alpha\right)+\left(cos\alpha\right)^2=3\left(1\right)+\left(\dfrac{1}{2}\right)^2\)
\(P=3+\dfrac{1}{4}=\dfrac{13}{4}\)
vậy chọn đáp án \(C\)