Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tìm max:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(2x+\sqrt{5-x^2})^2\leq (x^2+5-x^2)(2^2+1)=25\)
\(\Rightarrow A\leq 5\)
Vậy \(A_{\max}=5\Leftrightarrow x=2\)
Tìm min:
ĐKXĐ: \(5-x^2\geq 0\Leftrightarrow -\sqrt{5}\leq x\leq \sqrt{5}\)
Do đó : \(A=2x+\sqrt{5-x^2}\geq 2x\geq -2\sqrt{5}\)
Vậy \(A_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)
Bài 2 bạn xem xem có viết nhầm đề bài không nhé.
\(A=\frac{3a}{2a-b}+\frac{3c}{2c-b}-2\)
Chỉ cần cho $b$ càng nhỏ thì giá trị của $A$ càng nhỏ rồi, mà lại không có điều kiện gì của $b$ ?
Bài 1:
Áp dụng BĐT Bunhiacopxky:
\(M^2=(a\sqrt{9b(a+8b)}+b\sqrt{9a(b+8a)})^2\)
\(\leq (a^2+b^2)(9ab+72b^2+9ab+72a^2)\)
\(\Leftrightarrow M^2\leq (a^2+b^2)(72a^2+72b^2+18ab)\)
Áp dụng BĐT AM-GM: \(a^2+b^2\geq 2ab\Rightarrow 18ab\leq 9(a^2+b^2)\)
Do đó, \(M^2\leq (a^2+b^2)(72a^2+72b^2+9a^2+9b^2)=81(a^2+b^2)^2\)
\(\Leftrightarrow M\leq 9(a^2+b^2)\leq 144\)
Vậy \(M_{\max}=144\Leftrightarrow a=b=\sqrt{8}\)
Bài 6:
\(a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\)
Vì \(a>1\rightarrow a-1>0\). Do đó áp dụng BĐT Am-Gm cho số dương\(a-1,\frac{1}{a-1}\) ta có:
\((a-1)+\frac{1}{a-1}\geq 2\sqrt{\frac{a-1}{a-1}}=2\)
\(\Rightarrow a+\frac{1}{a-1}=1+(a-1)+\frac{1}{a-1}\geq 3\) (đpcm)
Dấu bằng xảy ra khi \(a-1=1\Leftrightarrow a=2\)
Bài 3:
Xét \(\sqrt{a^2+1}\). Vì \(ab+bc+ac=1\) nên:
\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)
\(\Rightarrow \sqrt{a^2+1}=\sqrt{(a+b)(a+c)}\)
Áp dụng BĐT AM-GM có: \(\sqrt{(a+b)(a+c)}\leq \frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\)
hay \(\sqrt{a^2+1}\leq \frac{2a+b+c}{2}\)
Hoàn toàn tương tự với các biểu thức còn lại và cộng theo vế:
\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\leq \frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}=2(a+b+c)\)
Ta có đpcm. Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Bài 4:
Ta có:
\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2\)
\(\Leftrightarrow A+\frac{1}{4}=2a+\frac{b+a}{4a}+b^2=2a+b+\frac{b+a}{4a}+b^2-b\)
Vì \(a+b\geq 1, a>0\) nên \(A+\frac{1}{4}\geq a+1+\frac{1}{4a}+b^2-b\)
Áp dụng BĐT AM-GM:
\(a+\frac{1}{4a}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\Rightarrow A+\frac{1}{4}\geq 2+b^2-b=\left(b-\frac{1}{2}\right)^2+\frac{7}{4}\geq \frac{7}{4}\)
\(\Leftrightarrow A\geq \frac{3}{2}\).
Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow a=b=\frac{1}{2}\)
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
Điều đầu tiên ta chứng minh được bất đẳng thức sau : \(\sqrt{\dfrac{a^2}{a-1}}\ge2\)
Ta có :
\(\sqrt{\dfrac{a^2}{a-1}}\ge2\)
\(\Leftrightarrow\dfrac{a^2}{a-1}\ge4\)
\(\Leftrightarrow a^2\ge4a-4\)
\(\Leftrightarrow a^2-4a+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\ge0\) ( Luôn đúng )
Tương tự ta vẫn có : \(\sqrt{\dfrac{b^2}{b-1}}\ge2\)
Áp dụng BĐT Cô - Si cho hai số không âm ta có :
\(M=\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge2\sqrt{\dfrac{a^2b^2}{\left(a-1\right)\left(b-1\right)}}=2\sqrt{\dfrac{a^2}{a-1}}.\sqrt{\dfrac{b^2}{b-1}}=2.2.2=8\)
Vậy GTNN của M là 8 khi \(a=b=2\)
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge2\sqrt{\dfrac{a^2b^2}{\left(a-1\right)\left(b-1\right)}}=\dfrac{2ab}{\sqrt{\left(a-1\right)\left(b-1\right)}}\ge\dfrac{2ab}{\dfrac{a-1+1}{2}.\dfrac{b-1+1}{2}}=8\)
Dấu "=" xảy ra khi \(a=b=2\)