\(\frac{a}{1+b}\)+\(\frac{b}{1+a}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

mn ơi giúp e

11 tháng 8 2019

MN ƠI GIÚP E

6 tháng 9 2019

bx trc mà bt là chj giải cho rồi

h ms on olm nên ms đọc lại

^-^

9 tháng 8 2019

mn ơi giú e

22 tháng 7 2019

Em làm thử nhé!

Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)

Cauchy vào là ra rồi ạ;)

Bài 2: Em chịu

22 tháng 7 2019

2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\)\(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)

\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)

\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)

31 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:\(F=\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\)

\(=\frac{a}{2b+c}+\frac{b}{2c+a}+\frac{c}{2a+b}\)

\(=\frac{a^2}{2ab+ac}+\frac{b^2}{2bc+ab}+\frac{c^2}{2ac+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+ac+2bc+ab+2ac+bc}=\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\) khi \(a=b=c=\frac{1}{3}\)

25 tháng 9 2019

trả lời lẹ cho tui cấy