\(a>0;b>0\) và \(a+b=1\). Chứng minh : ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

       \(a^2+b^2\le\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{3}{ab}+\frac{1}{a^2+b^2}\ge\frac{3}{\frac{1}{4}}+\frac{1}{\frac{1}{2}}=12+2=14\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

17 tháng 8 2019

\(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a+b\right)^2\left(bunhiacopxki\right)\)

\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) chứ bạn .

5 tháng 4 2017

a) đề thiếu òi bạn à            

16 tháng 12 2019

Định dùng Abel mà quên là ko có điều kiện vs lại thường dùng cho BĐT:v

Đặt \(\frac{x}{a}=m;\frac{y}{b}=n\) 

Khi đó \(m+n=1;mn=-2\).Ta cần chứng minh:\(m^3+n^3=7\).Thật vậy !

Ta có:

\(m^3+n^3=\left(m+n\right)^3-3mn\left(m+n\right)=1^3-3\cdot\left(-2\right)\cdot1=1+6=7\)

=> đpcm

17 tháng 6 2020

2x^2 – 7x + 3 = 0

17 tháng 6 2020

Ta có: \(\frac{a+b}{2}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\Leftrightarrow\frac{a+b}{2}\ge\frac{2}{\frac{a+b}{ab}}\)

\(\Leftrightarrow\frac{a+b}{2}\ge\frac{2ab}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi a = b

19 tháng 7 2016

Ta sẽ chứng minh bầng biến đổi tương đương : 

a ) \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

Vậy bđt được chứng minh.

b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

Bạn cần thêm điều kiện a,b>0 cho cả a) nữa nhé :)

19 tháng 7 2016

a/ ta có :\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2+b^2}{2}\ge ab\) ( ĐPCM)

21 tháng 8 2017

ko bts nha

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

24 tháng 4 2018

áp dụng bất đẳng thức cosi

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}\cdot\frac{1}{a}\cdot\frac{1}{a}}=3\cdot\frac{1}{b}\)

đoạn tiếp bạn tự làm nha