\(\dfrac{2a^2+3a+8}{a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

P = \(\dfrac{2a^2+3a+8}{a}\) với \(a>0\)

=> P =\(2a+\dfrac{8}{a}+3\)

Áp dụng BĐT Cosi ta có :

\(2a+\dfrac{8}{a}\ge2\sqrt{2a.\dfrac{8}{a}}=8\)

=> P \(\ge8+3=11\) Dấu "=" xảy ra \(\Leftrightarrow2a=\dfrac{8}{a}\) \(\Leftrightarrow a=2\) ( Thỏa mãn ĐKXĐ )

Vậy MinP=11 \(\Leftrightarrow a=2\)

9 tháng 5 2020

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)

Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)

Dấu "=" xảy ra khi x = y = a

vậy ....

17 tháng 12 2018

Bài này dễ mà bạn

17 tháng 12 2018

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

25 tháng 3 2017

Áp dụng BĐT Cô-si ta có

\(\dfrac{a}{a^2+1}\) + \(\dfrac{5\left(a^2+1\right)}{2a}\) \(\ge\sqrt{\dfrac{5}{2}}\)

Dấu "=" xảy ra <=> 2a2 = ( a2 +1 )2

=>\(\left[{}\begin{matrix}a^2+1=2a\\a^2+1=-2a\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}a^2-2a+1=0\\a^2+2a+1=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left(a-1\right)^2=0\\\left(a+1\right)^2=0\end{matrix}\right.\) => (a - 1)2 = 0 (vì a + 1 >0)

=> a = 1

Vậy Pmin = \(\sqrt{\dfrac{5}{2}}\) <=>a = 1

25 tháng 3 2017

P = \(\dfrac{a}{a^2+1}\) + \(\dfrac{a^2+1}{4a}\) + \(\dfrac{9\left(a^2+1\right)}{4a}\)

Cô-si 2 con đầu ra a = 1

thay a = 1 => P = \(\dfrac{11}{2}\)

1 tháng 1 2017

có cho x dương ko để xài Cosi

11 tháng 3 2017

Mình nghĩ lớp 9 phải biết cosi rồi.

6 tháng 10 2019

\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)

\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)

\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)

\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)

Chúc bạn học tốt !!!

1 tháng 1 2020

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có :

\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{12}\)

Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)