
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?

Bài 1:
a, \(\sqrt[4]{3}\) < 12
b, \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) +5
c, \(\sqrt[5]{3}\) < \(\sqrt[3]{5}\)
Bài 2:
a, Ta có : a= \(\sqrt{a}\) * \(\sqrt{a}\) > a (vì a>1)
b, tương tự

ta có: \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}.\) (*)
\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)( vì a>0 ; b>0)
\(\Leftrightarrow\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{a.b}\) ( vì \(\sqrt{ab}\ge0\) )
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{a.b}+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-2\sqrt{a.b}+b\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng vì \(\sqrt{a}+\sqrt{b}\ge0;\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với a>0;b>0
=>(*) luôn đúng => đpcm
Ta có : \(\sqrt{a}+2>\sqrt{a+4}\)
\(\Leftrightarrow a+4\sqrt{a}+4>a+4\)
\(\Leftrightarrow4\sqrt{a}>0\) ( Đúng )
Kiến thức này có từ đầu năm rồi nhé bạn.
Với \(a\ge0,b\ge0\) , ta có:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\ \sqrt{a}-\sqrt{b}\le\sqrt{a+b}\)