\(\sqrt{a}+2>\sqrt{a+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Ta có : \(\sqrt{a}+2>\sqrt{a+4}\)

\(\Leftrightarrow a+4\sqrt{a}+4>a+4\)

\(\Leftrightarrow4\sqrt{a}>0\) ( Đúng )

18 tháng 1 2019

Kiến thức này có từ đầu năm rồi nhé bạn.
Với \(a\ge0,b\ge0\) , ta có:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\ \sqrt{a}-\sqrt{b}\le\sqrt{a+b}\)

1 tháng 3 2017

Xem câu hỏi đây nhé >4>0 :)

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

26 tháng 7 2017

Bài 1:

a, \(\sqrt[4]{3}\) < 12

b, \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) +5

c, \(\sqrt[5]{3}\) < \(\sqrt[3]{5}\)

Bài 2:

a, Ta có : a= \(\sqrt{a}\) * \(\sqrt{a}\) > a (vì a>1)

b, tương tự

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

29 tháng 10 2017

ta có: \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}.\)  (*)

\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)( vì a>0 ; b>0)

\(\Leftrightarrow\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{a.b}\) ( vì \(\sqrt{ab}\ge0\) )

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{a.b}+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-2\sqrt{a.b}+b\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)  luôn đúng vì \(\sqrt{a}+\sqrt{b}\ge0;\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với a>0;b>0

=>(*) luôn đúng => đpcm