Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khó quá. Đúng là Câu Hỏi Hay!!
a)Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân theo vế 2 BĐT trên có:
\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)
Khi \(a=b=c\)
Bài 2:
a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
Khi \(x=y\)
b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)
Cộng theo vế 3 BĐT trên ta có:
\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)
Khi \(a=b=c\)
Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:
\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
\(\Rightarrow MinA=9\)
Dấu "=" xảy ra khi a = b = c
Áp dụng BĐT Cô - Si , ta có :
\(\dfrac{a}{b^2}+\dfrac{1}{a}\) ≥ \(2\sqrt{\dfrac{a}{b^2}.\dfrac{1}{a}}=2.\dfrac{1}{b}\left(a,b>0\right)\left(1\right)\)
\(\dfrac{b}{c^2}+\dfrac{1}{b}\text{ ≥ }2\sqrt{\dfrac{b}{c^2}.\dfrac{1}{b}}=2.\dfrac{1}{c}\left(b,c>0\right)\left(2\right)\)
\(\dfrac{c}{a^2}+\dfrac{1}{c}\text{≥}2\sqrt{\dfrac{c}{a^2}.\dfrac{1}{c}}=2.\dfrac{1}{a}\left(a,c>0\right)\left(3\right)\)
Từ ( 1 ; 2 ; 3) Ta có :
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≥ \(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
⇔\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\) ≥ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Ta có: \(\dfrac{a-1}{c}+\dfrac{c-1}{b}+\dfrac{b-1}{a}\)
= \(\dfrac{a-abc}{c}+\dfrac{c-abc}{b}+\dfrac{b-abc}{a}\)
= \(\dfrac{a(1-bc)}{c}+\dfrac{c(1-ab)}{b}+\dfrac{b(1-ac)}{a}\)
= \(\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{1-bc}{c}+\dfrac{1-ab}{b}+\dfrac{1-ac}{a}\)
Đề sai, ngược dấu rồi.
Ta chứng minh BĐT phụ sau: \(\dfrac{x}{x+1}\le\dfrac{9}{16}x+\dfrac{1}{16}\left(\forall x\in0;1\right)\)
Thật vậy: \(\dfrac{x}{x+1}\le\dfrac{9}{16}x+\dfrac{1}{16}\)
\(\Leftrightarrow0\le\dfrac{9x+1}{16}-\dfrac{x}{x+1}\)
\(\Leftrightarrow0\le\dfrac{\left(9x+1\right)\left(x+1\right)-16x}{16\left(x+1\right)}\)
\(\Leftrightarrow0\le9x^2-6x+1=\left(3x-1\right)^2\)(Luôn đúng \(\forall x\in0;1\))
Áp dụng vào bài, ta được:
\(\dfrac{a}{a+1}\le\dfrac{9}{16}a+\dfrac{1}{16}\)
\(\dfrac{b}{b+1}\le\dfrac{9}{16}b+\dfrac{1}{16}\)
\(\dfrac{c}{c+1}\le\dfrac{9}{16}c+\dfrac{1}{16}\)
Cộng vế theo vế ta được đpcm
Ta có:
\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\)
\(=a+b+c-\dfrac{ab^2}{1+b^2}-\dfrac{bc^2}{1+c^2}-\dfrac{ca^2}{1+a^2}\)
\(\ge3-\dfrac{ab^2}{2b}-\dfrac{bc^2}{2c}-\dfrac{ca^2}{2a}\)
\(=3-\dfrac{1}{2}\left(ab+bc+ca\right)\ge3-\dfrac{1}{2}.\dfrac{\left(a+b+c\right)^2}{3}\)
\(=3-\dfrac{3}{2}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
Ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2c\)
Chứng minh tương tự, ta có:
\(\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\)
\(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)
\(\Rightarrow2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)
Dấu = xảy ra khi a = b = c
Ùi mình làm theo kiểu khác thử :V, nhưng có hơi hướng giống và bổ sung :D
Câu 2 : a,b,c > 0. CM : \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Giải :
C1 : Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\left(ĐPCM\right)\)
Đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\).
C2 : Đầy đủ hơn với cách giải đúng của bạn Hoàng Thiên Di :
Áp dụng BĐT AM-GM cho 3 số dương (sgk là cosi :v)
\(a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
\(\ge3+2+2+2=9\left(ĐPCM\right)\)
Câu 3 : a,b,c > 0. CM : \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
Giải :
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
\(\Leftrightarrow\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\ge6\)
\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge6\)
Theo bất đẳng thức Cosi : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{yx}}=2\)
Thay vào các vế được : \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\sqrt{1}=2\)
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\sqrt{1}=2\)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\sqrt{1}=2\)
\(\Leftrightarrow2+2+2\ge6\) (đúng)
BĐT được c/m.
Đặt P=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Không mất tính tổng quát giả sử a ≥b ≥ c , thế thì \(\dfrac{1}{b+c}\ge\dfrac{1}{c+a}\ge\dfrac{1}{a+b}\) .Áp dụng bất đẳng thức Chebyshev cho hai dãy đơn điệu cùng chiều ta có :
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{1}{3}\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\left(\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\right)\)
Hay \(P\ge\dfrac{1}{3}\left(P+3\right)\) nghĩa là \(P\ge\dfrac{3}{2}^{\left(đpcm\right)}\)