\(S=\dfrac{a}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

Đặt x = a + 1, y = b + 1, z = c + 1, ta có : x, y, z > 1 và x + y + z = 4

\(S=\frac{x-1}{x}+\frac{y-1}{y}+\frac{z-1}{z}=3-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Áp dụng bất đẳng thứcCauchy-Swarchz:

\(\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{4}\) Dấu = khi 1/x = 1/y= 1/z , hay là x = y = z = 4/3

Vậy S< 3 - 9/4 = 3/4

29 tháng 12 2015

khó

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

22 tháng 4 2018
https://i.imgur.com/0rGnRbD.jpg
22 tháng 4 2018

\(S=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)=\dfrac{a+1}{a}.\dfrac{b+1}{b}\)

\(=\dfrac{a+a+b}{a}.\dfrac{b+a+b}{b}=\dfrac{2a+b}{a}.\dfrac{a+2b}{b}\)

\(=\dfrac{2a^2+4ab+ab+2b^2}{ab}=\dfrac{2\left(a^2+2ab+b^2\right)}{ab}+\dfrac{ab}{ab}\)

\(=\dfrac{2}{ab}+1\)

Ta có \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2+2ab\ge0\Rightarrow2ab\le a^2+b^2\)

\(\Rightarrow4ab\le\left(a+b\right)^2=1\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{2}{ab}\ge8\Rightarrow\dfrac{2}{ab}+1\ge9\)

hay S>=9

Dấu = xảy ra khi a=b=1/2

vậy minS=9 khi a=b=1/2

22 tháng 7 2018

Từ giả thiết \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\Rightarrow xy+yz+xz=1\left(x=\dfrac{1}{a};y=\dfrac{1}{b};z=\dfrac{1}{c}\right)\)

\(A=\sum\dfrac{1}{\sqrt{1+a^2}}=\sum\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{a^2}+1}}=\sum\dfrac{x}{\sqrt{x^2+1}}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\sum\dfrac{x}{x+y}+\dfrac{x}{x+z}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2017

Bài này rất dài dòng nhưng cũng rất quen.

https://diendantoanhoc.net/topic/153766-bổ-đề-hoán-vị/

18 tháng 11 2017

bài này tui post lên cho mn xem và chia sẻ cách làm nhé bn còn cách nào hay thì sharre hết cho mk với ;v

29 tháng 10 2017

cái này tìm max thật sao bạn

30 tháng 10 2017

ta có \(P=3-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{4}{c}\) theo bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{6-c}\Rightarrow-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\le-\dfrac{4}{6-c}=\dfrac{4}{c-6}\)

\(\Rightarrow P\le3+\dfrac{4}{c-6}-\dfrac{4}{c}\)\(=3+\dfrac{24}{c^2-6c}\)

\(\Rightarrow P\) lớn nhất khi \(\dfrac{24}{c^2-6c}\) lớn nhất

\(\Leftrightarrow c^2-6c\) nhỏ nhất mà \(c^2-6c=c^2-6c+9-9=\left(c-3\right)^2-9\ge-9\)

\(\Rightarrow c^2-6c\ge-9\) \(\Rightarrow\dfrac{24}{c^2-6c}\le\dfrac{-24}{9}\)

\(\Rightarrow P\le3-\dfrac{24}{9}=\dfrac{1}{3}\)\(\Rightarrow MaxP=\dfrac{1}{3}\) dấu bằng xảy ra tại \(c=3;a=b=\dfrac{3}{2}\)

30 tháng 12 2022

1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 1:

Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min

Nếu chuyển tìm max thì em tìm như sau:

Áp dụng BĐT Cauchy_Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)

Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)

Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 2:

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)

\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)

Cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)

hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

27 tháng 4 2017

Đề thiếu , a+b+c = ?