\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2023

Áp dụng BĐT Svácxơ, ta có:

\(A=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

\(MinA=1\Leftrightarrow x=y=z=\dfrac{2}{3}\)

 

5 tháng 9 2017

điều kiện có thiếu ko vậy

5 tháng 9 2017

à mk vt nhầm để mk sửa

12 tháng 10 2018

Điều đầu tiên ta cần chứng minh được BĐT :

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2x+2y+2z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\) ( Đúng )

\(\Rightarrow x+y+z\ge1\)

Áp dụng BĐT Cauchy - schwarz dưới dạng en-gel ta có :

\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{1}{2}\)

Vậy \(Min_A=\dfrac{1}{2}\) . Dấu \("="\) xảy ra khi \(x=y=z=\dfrac{1}{3}\)

25 tháng 10 2018

Nesbit:v dài

25 tháng 10 2018

Nham ko phai Nesbit, Cauchy-Schwarz ra luon

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\((x^2+y+z)(1+y+z)\geq (x+y+z)^2\Rightarrow x^2+y+z\geq \frac{(x+y+z)^2}{1+y+z}\)

\(\Rightarrow \sqrt{\frac{x^2}{x^2+y+z}}\leq \sqrt{\frac{x^2(1+y+z)}{(x+y+z)^2}}=\frac{x\sqrt{1+y+z}}{x+y+z}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow A\leq \frac{x\sqrt{1+y+z}+y\sqrt{1+x+z}+z\sqrt{x+y+1}}{x+y+z}\)

Áp dụng BĐT Cauchy-Schwarz:

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)(xy+xz+x+yx+yz+y+zx+zy+z)\)

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)[2(xy+yz+xz)+x+y+z]\) (1)

Theo BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)=(x^2+y^2+z^2)(xy+yz+xz)\geq (xy+yz+xz)^2\)

\(\Rightarrow x+y+z\geq xy+yz+xz\) (2)

Từ \((1),(2)\Rightarrow (x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z).3(x+y+z)=3(x+y+z)^2\)

\(\Leftrightarrow x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1}\leq \sqrt{3}(x+y+z)\)

\(\Rightarrow A\leq \frac{\sqrt{3}(x+y+z)}{x+y+z}=\sqrt{3}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

13 tháng 5 2017

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1