Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=a^2-2\)
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=a^3-3a\)
....................................
A có hướng giải thế này nhưng hơi phức tạp
\(a=x+\frac{1}{x}\)
\(\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\)
\(\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)
\(\Leftrightarrow\left(a^2-2\right)^2=x^4+\frac{1}{x^4}+2\)
\(\Leftrightarrow\left(a^2-2\right)^2-2=x^4+\frac{1}{x^4}\)
Tương tự ta tính
\(a^3=x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)\)
\(\Leftrightarrow a^3-3a=x^3+\frac{1}{x^3}\)
\(\Leftrightarrow\left(a^3-3a\right)^2=x^6+\frac{1}{x^6}+2\)
\(\Leftrightarrow\left(a^3-3a\right)^2-2=x^6+\frac{1}{x^6}\)
Ta lại có
\(\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)
Tới đây e tìm được \(\frac{1}{x^7}+x^7\)
Có \(\frac{1}{x^6}+x^6;\frac{1}{x^7}+x^7\)
Nhân vô sữ tìm được \(\frac{1}{x^{13}}+x^{13}\)
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
Gợi ý:
Đặt:
\(\frac{1}{117}=a\)
\(\frac{1}{119}=b\)
Đến đây bạn thế a, b vào A rồi thu gọn, sau đó tính
a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
\(3x^2+10x-8=5x^2-2x+10\)
\(3x^2-5x^2+10x+2x-8-10=0\)
\(-2x^2+12x-18=0\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(\frac{x^2-x-6}{x-3}=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
ĐKXĐ:...
Đặt \(x+\frac{1}{x}=a\Rightarrow a^3=x^3+\frac{1}{x^3}+3x.\frac{1}{x}\left(x+\frac{1}{x}\right)\)
\(\Rightarrow a^3=x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}+3a\)
\(\Rightarrow x^3+\frac{1}{x^3}=a^3-3a\)
Thay vào pt ta được:
\(4\left(a^3-3a\right)=13a\)
\(\Leftrightarrow4a^3-25a=0\Leftrightarrow a\left(4a^2-25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=\frac{5}{2}\\a=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=0\\x+\frac{1}{x}=\frac{5}{2}\\x+\frac{1}{x}=-\frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(vn\right)\\2x^2-5x+2=0\\2x^2+5x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=\pm\frac{1}{2}\end{matrix}\right.\)
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt
a = x + \(\frac{1}{x}\)
a = \(\frac{x^2}{x}+\frac{1}{x}=\frac{x^2+1}{x}\)
\(a=x^{13}+\frac{1}{x^{13}}=\frac{\left(x^{13}\right)^2}{x^{13}}+\frac{1}{x^{13}}=\frac{x^{26}+1}{x^{13}}\)