Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A-B=x4+4-x4-x2-2
=-x2+2\(\le\)0+2=2
Dấu = khi x=0
b)A=x4+4
=(x2)2+22
=(x2-2x+2)(x2+2x+2)
B sai đề
a) A-B=x4+4-x4-x2-2=2-x2
Vì x2 luôn lớn hơn hoặc bằng 0
=>A-B luôn lớn hơn hoặc bằng 2-0=2
Vậy Max (A-B)=2 khi và chỉ khi x=0
b)A=x^4+4
=x^4+4x^2-4x^2+4
=x^4+4x^2+4-4x^2
=(x^4+4x^2+4)-4x^2
=(x^2+2)^2-(2x)^2
=(x^2+2+2x)(x^2+2-2x)
B=x^4+x^2+2
không phân tích được dưới dạng tích của các thừa số
X=1 thì A là SNT
x=0 thì B là SNT
\(ab\left(a-b\right)-ac\left(a+c\right)+bc\left(2a-b+c\right)\)
\(=ab\left(a-b\right)-ac\left(a+c\right)+bc\left[\left(a-b\right)+\left(a+c\right)\right]\)
\(=ab\left(a-b\right)-ac\left(a+c\right)+bc\left(a-b\right)+bc\left(a+c\right)\)
\(=\left(a-b\right)\left(ab+bc\right)+\left(a+c\right)\left(bc-ac\right)\)
\(=b\left(a-b\right)\left(a+c\right)-c\left(a+c\right)\left(a-b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+c\right)\)
Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)
Bài 2:
a) \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
b) \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)
c) \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề
còn mấy câu nữa bn đăng lại nhé
a) Ta có: \(x^2-x-6\)
\(=x^2-x-9+3\)
\(=\left(x^2-9\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) Sử dụng phương pháp Hệ số bất định
a: \(A-B=x^4+4-x^4-x^2-2=-x^2+2< =2\forall x\)
Dấu '=' xảy ra khi x=0
b: \(A=x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)