K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

\(A=x^2+xy+y^2-3x-3y+3002\)

\(=\left(x^2-2x+1\right)+\left(y^2-2x+1\right)+\left(xy-x-y+1\right)+2009\)

\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)+2009\)

\(=\left(x-1\right)^2+\dfrac{1}{4}\left(y-1\right)^2+2.\left(x-1\right).\dfrac{1}{2}\left(y-1\right)+\dfrac{3}{4}\left(y-1\right)^2+2009\)

\(=\left[\left(x-1\right)+\dfrac{1}{2}\left(y-1\right)\right]^2+\dfrac{3}{4}\left(y-1\right)^2+2009\)

Ta thấy : \(\left\{{}\begin{matrix}\left[\left(x-1\right)+\dfrac{1}{2}\left(y-1\right)\right]^2\ge0\forall x;y\\\dfrac{3}{4}\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow A=\left[\left(x-1\right)+\dfrac{1}{2}\left(y-1\right)\right]^2+\dfrac{3}{4}\left(y-1\right)^2+2009\ge2009\)

Dấu "=" xảy ra <=> x = y = 1

Vậy x = y = 1 thì A đạt GTNN là 2009

8 tháng 3 2020

Gọi \(A=x^2+y^2+xy-3x-3y-3\)

\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-6\)

\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-6\)

\(=\left(x-1\right)^2+2\left(x-1\right)\frac{1}{2}\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2+\frac{3}{4}\left(y-1\right)^2-6\)

\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)Có GTNN là -6

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow x=y=1}\)

Vậy GTNN của A là -6 tại x = y = 1

A= x2+y2+xy-3x-3y-3

\(=\left[x-1+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1+\frac{1}{2}\left(y-1\right)=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy.............

30 tháng 12 2019

a) Ta có: A = x2 + y2 - xy - 2x - 2y + 9

2A = 2x2 + 2y2 - 2xy - 4x - 4y + 18

2A = (x2 + y2 - 2xy) + (x2 - 4x + 4) + (x2 - 4y + 4) + 10

2A = (x - y)2 + (x - 2)2 + (y - 2)2 + 10 \(\ge\)10 \(\forall\)x

=>A \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\) <=> x = y = 2

Vậy MinA = 5 <=> x = y = 2

b) Ta có: 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0

=> (2x2 + 2y2 + 4xy) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0

=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\) 

<=> \(\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

22 tháng 6 2016

\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)

\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)

Min A=-3 khi x=2;y=-3

22 tháng 6 2016

\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)

\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)

Min B=-3 khi y=1;x=1

2 tháng 6 2016

bạn tham khảo đi Tìm GTNH: P=x^2+xy+y^2-3x-3y+2010? | Yahoo Hỏi & Đáp

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

14 tháng 8 2019

1)a)x+y=60

<=>(x+y)^2=3600

<=>x^2+2xy+y^2=3600(1)

mà xy=35 nên 2xy=2.35=70

(1)<=>x^2+70+y^2=3600

<=>x^2+y^2=3530

<=>(x^2+y^2)^2=12460900

<=>x^4+2x^2.y^2+y^4=12460900(2)

mà xy=35 nên 2x.x.y.y=2450

(2)<=>x^4+y^4=123458450

 b)x+y=1

<=>(x+y)^3=1

<=>x^3+3x^2y+3xy^2+y^3=1

<=>x^3+y^3+3xy(x+y)=1

<=>x^3+y^3+3xy=1

=>M=1

x+y=1

<=>x^2+2xy+y^2=1(1)

B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)

=x^3+y^3+3xy(x^2+2xy+y^2)

=M.1=1(từ(1)

c)

x-y=1

<=>(x-y)^3=1

<=>x^3-3x^2y+3xy^2-y^3=1

<=>x^3-y^3-3xy(x-y)=1

<=>x^3-y^3-3xy=1

=>N=1

10 tháng 10 2018

Đặt biểu thức là A

\(x^2+xy+y^2-3x-3y+2018\)

\(=\left(x^2+xy+y^2\right)-\left(3x+3y\right)+2018\)

\(=\left(x+y\right)^2-3\left(x+y\right)+2018\)

Ta có : (x - y)² ≥ 0 
<=> x² + y² ≥ 2xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
<=> xy ≤ (x + y)²/4 
<=> -xy ≥ -(x + y)²/4 

--> A ≥ (x + y)² - 3(x + y) - (x + y)²/4 

<=> A ≥ 3(x + y)²/4 - 3(x + y) 

để dễ nhìn,ta đặt t = x + y 

--> A ≥ 3t²/4 - 3t = 3(t²/4 - 2.t/2 + 1) - 3 = 3(t/2 - 1)² - 3 ≥ -3 

Dấu " = " xảy ra <=> t/2 = 1 <=> t = 2 <=> x + y = 2 và x = y --> x = y = 1 

Vậy MinA = -3 <=> x = y = 1