K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

24 tháng 6 2017

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6

13 tháng 8 2020

a) P có nghĩa khi \(\hept{\begin{matrix}2x+4\ne0\\2x-4\ne0\\x^2-4\ne0\\x-2\ne0\end{matrix}}\Leftrightarrow\hept{\begin{matrix}2\left(x+2\right)\ne0\\2\left(x-2\right)\ne0\\\left(x-2\right)\left(x+2\right)\ne0\\x-2\ne0\end{matrix}\Leftrightarrow\hept{\begin{matrix}x+2\ne0\\x-2\ne0\end{matrix}}\Leftrightarrow x\ne\pm2}\)

vậy P có nghĩa khi \(x\ne\pm2\)

b) \(P=\left(\frac{x+2}{2x-4}+\frac{x-2}{2x+4}-\frac{8}{x^2-4}\right):\frac{4}{x-2}\left(x\ne\pm2\right)\)

\(\Leftrightarrow P=\left(\frac{x+2}{2\left(x-2\right)}+\frac{x-2}{2\left(x+2\right)}-\frac{8}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x-2}{4}\)

\(\Leftrightarrow P=\left[\frac{\left(x+2\right)^2}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2}{2\left(x-2\right)\left(x+2\right)}-\frac{16}{2\left(x-2\right)\left(x+2\right)}\right]\cdot\frac{x-2}{4}\)

\(\Leftrightarrow P=\left[\frac{x^2+4x+4}{2\left(x-2\right)\left(x+2\right)}+\frac{x^2-4x+4}{2\left(x-2\right)\left(x+2\right)}-\frac{16}{2\left(x-2\right)\left(x+2\right)}\right]\cdot\frac{x-2}{4}\)

\(\Leftrightarrow P=\frac{x^2+4x+4+x^2-4x+4-16}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{4}\)

\(\Leftrightarrow P=\frac{2x^2-8}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{4}=\frac{2\left(x^2-4\right)\left(x-2\right)}{8\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)\left(x-2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}=\frac{x-2}{4}\)

vậy P=\(\frac{x-2}{4}\left(x\ne\pm2\right)\)

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

12 tháng 8 2015

1)a)3(2x-1)(3x-1)-(2x-3)(9x-1)=0

<=>18x2-15x+1-18x2+29x-3=0

<=>14x-2=0

<=>14x=2

<=>x=1/7

b)4(x+1)2+(2x-1)2-8(x-1)(x+1)=11

<=>4x2+8x+4+4x2-4x+1-8x2+8=11

<=>4x+13=11

<=>4x=11-13

<=>4x=-2

<=>x=-1/2

c)Sai đề phải là dấu - chứ không phải +

(x-3)(x2+3x+9)-x(x-2)(x+2)=1

<=>x3-27-x3+4x=1

<=>4x=1+27

<=>4x=28

<=>x=7

2)a)(2x-3y)(2x+3y)-4(x-y)2-8xy

=4x2-9y2-4x2+8xy-4y2-8xy

=-13y2

b)(x-2)3-x(x+1)(x-1)+6x(x-3)

=x3-6x2+12x+8-x3+x+6x2-18x

=8-5x

c)(x-2)(x2-2x+4)(x+2)(x2+2x+4)

=(x-2)(x2+2x+4)(x+2)(x2-2x+4)

=(x3-8)(x3+8)

=x6-64

14 tháng 9 2015

Nguyễn Diệu Thảo sap c hk **** cho  Moon Light

23 tháng 6 2017

a) Điều kiện : \(x\ne2;x\ne3\)

 \(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

23 tháng 6 2017

b) Điều kiện \(x\in Z;x\ne2;x\ne3\)

Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên

\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)

mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)