K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

Ta có

\(xA=x^{12}+x^{11}+....+x\)

\(\Rightarrow xA-A=\left(x-1\right)A=\left(x^{12}+....+x\right)-\left(x^{11}+1\right)=x^{12}-1\)

Giải tương tự ta được \(\left(x-1\right)B=x^6-1\)

Ta có

\(A:B=\left(x-1\right)A:\left(x-1\right)B=\frac{x^{12}-1}{x^6-1}\)

 

12 tháng 9 2020

1, \(A=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{x^2-1}\)

\(=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9\left(1-x\right)\left(x-1\right)}{\left(x+1\right)\left(1-x\right)\left(x-1\right)}-\frac{8\left(x+1\right)\left(x-1\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}-\frac{16\left(1-x\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}\)

\(=\frac{9\left(1-x\right)\left(x-1\right)-8\left(x+1\right)\left(x-1\right)-16\left(1-x\right)}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)

\(=\frac{18x-9-9x^2-8x^2+8-16+16x}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17x^2+34x-17}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)

\(=\frac{-17\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17\left(x-1\right)}{\left(x+1\right)\left(1-x\right)}\)

12 tháng 9 2020

2, \(B=\frac{x^2+10x+25}{x+5}-\frac{x^2-6x+9}{x-3}\)

\(=\frac{\left(x+5\right)^2}{x+5}-\frac{\left(x-3\right)^2}{x-3}=x+5-x+3=8\)

a: \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

=>-12x-15=9

=>-12x=24

hay x=-2

b: \(\Leftrightarrow9x^2-6x+1+2x^2+12x+18+11\left(1-x^2\right)=6\)

\(\Leftrightarrow11x^2+6x+19+11-11x^2=6\)

=>6x+30=6

=>6x=-24

hay x=-4

c: \(\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)

=>3x=1

hay x=1/3

d: \(\Leftrightarrow x^3-6x^2+12x-8-x\left(x^2-1\right)+6x^2=5\)

\(\Leftrightarrow x^3+12x-8-x^3+x=5\)

=>13x=13

hay x=1

e: \(\Leftrightarrow x^3-27-x^3+16x=5\)

=>16x=32

hay x=2

19 tháng 8 2020

Bài 1: 

a) (x+y)2=92=81

=> x2+2xy+y2=81

=> x2+2.14+y2=81

=> x2+y2=53

=> x2-2xy+y2=81-2.14=25

=> (x-y)2=25

=> x-y=5 hoặc x-y=-5

b) Câu a đã tính được x2+y2=53

c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351

Bài 2: 

Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=1

\(\Rightarrow1^2-4.1+1=-2\)

Bài 3: 

Ta có: (x+y)3=x3+3x2y+3xy2+y3 

= x3+y3+3xy(x+y)

Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1

Bài 4: 

Ta có: \(\left(x+y\right)^2=4^2=16\)

\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)

\(\Rightarrow2xy=6\Rightarrow xy=3\)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)

\(=4.7=28\)

Bài 5: 

Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)

Mấy bài này đầu hè làm hết rồi:))

19 tháng 8 2020

Bài 1:

a) \(xy=14\Rightarrow x=\frac{14}{y}\)

Thay vào: \(\frac{14}{y}+y=9\)

\(\Leftrightarrow y^2+14-9y=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)

+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)

+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)

b) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^2=81\)

\(\Leftrightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)

c) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^3=9^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)

\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)

22 tháng 7 2017

1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)

\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)

\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(4x-8y\right)\)

3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)

\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)

\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)

\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)

\(=\left(x-9y\right)\left(9x-y\right)\)

4. \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

5. \(a^3x-ab+b-x\)

\(=a^3x-x-ab+b\)

\(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)

6. \(x^3-64=x^3-4^3\)

\(=\left(x-4\right)\left(x^2+4x+16\right)\)

7. \(0,125\left(a+1\right)^3-1\)

\(=\left[0,5\left(a+1\right)\right]^3-1^3\)

\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)

\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)

\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)

8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)

\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)

\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)

\(=\left(2x+22\right)\left(4x+8\right)\)

9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

11. \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

24 tháng 7 2018

a, x = 79 => x + 1 = 80

Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)

\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)

\(=x+15=79+15=94\)

Còn lại tương tự

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

5 tháng 9 2020

a, \(\left(x+2\right)^2-\left(x+3\right)\left(x-3\right)+10=x^2+4x+4-x^2+9+10=4x+23\)

b, \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)=25-10x+x^2+x^2+10x+25-2x^2+50=100\)

5 tháng 9 2020

a) ( x + 2 )2 - ( x + 3 )( x - 3 ) + 10 

= x2 + 4x + 4 - ( x2 - 9 ) + 10

= x2 + 4x + 4 - x2 + 9 + 10

= 4x + 23

b) ( x + 1 )2 + ( x - 2 )( x + 3 ) - 4x

= x2 + 2x + 1 + x2 + x - 6 - 4x

= 2x2 - 2x - 5

c) ( x - 2 )( x + 2 ) - ( x - 3 )( x + 1 )

= x2 - 4 - ( x2 - 2x - 3 )

= x2 - 4 - x2 + 2x + 3

= 2x - 1 

d) ( x + 4 )2 + ( x + 5 )( x - 5 ) - 2x( x + 1 )

= x2 + 8x + 16 + x2 - 25 - 2x2 - 2x

= 6x - 9

e) ( 5 - x )2 + ( x + 5 )2 - ( 2x + 10 )( x - 5 )

= 25 - 10x + x2 + x2 + 10x + 25 - ( 2x2 - 50 ) 

= 2x2 + 50 - 2x2 + 50

= 100

f) ( x - 2 )2 + ( x + 1 )2 + 2( x - 2 )( -1 - x )

= x2 - 4x + 4 + x2 + 2x + 1 + 2( -x2 + x + 2 )

= 2x2 - 2x + 5 - 2x2 + 2x + 4

= 9

g) ( 3x - 5 )2 - 2( 3x - 5 )( 3x + 5 ) + ( 3x + 5 )2

= [ ( 3x - 5 ) - ( 3x + 5 ) ]2

= ( 3x - 5 - 3x - 5 )2

= ( -10 )2 = 100

h) (  y - 3 )( y + 3 )( y2 + 9 ) - ( y2 + 2 )( y2 - 2 )

= ( y2 - 9 )( y2 + 9 ) - [ ( y2 )2 - 4 ]

= [ ( y2 )2 - 81 ] - y4 + 4

= y4 - 81 - y4 + 4

= -77

2 tháng 8 2017

6,

=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]

=rồi nhóm hạng tử chung lại

=và sau đó tách ra bằng hằng đẳng thức 

kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)

              Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé !