K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Ta có: \(A=\left(x+y+z\right)^3+\left(x-y-z\right)^3\)

\(=\left[\left(x+y\right)+z\right]^3+\left[\left(x-y\right)^3-z\right]^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3+\left(x-y\right)^3-3\left(x-y\right)^2z+3\left(x-y\right)z^2-z^3\)

\(=x^3+3x^2y+3xy^2+3\left(x^2+2xy+y^2\right)z+3z^2x+3z^2y+z^3+x^3-3x^2y+3xy^2-y^3\)\(-3\left(x^2-2xy+y^2\right)z+3z^2x-3z^2y-z^3\)

\(=x^3+3x^2y+3xy^2+3zx^2+6xyz+3zy^2+3z^2x+3z^2y+z^3+x^3-3x^2y+3xy^2-y^3\)

\(-3zx^2+6xyz-3zy^2+3z^2x-3z^2y-z^3\)

\(=2x^3+6xy^2+12xyz+6z^2x\left(1\right)\)

Ta có: \(B=6xy\left(y+z\right)^2+2x^3\)

\(=6xy\left(y^2+2yz+z^2\right)+2x^3\)

\(=6xy^3+12xy^2z+6xyz^2+2x^3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow A\ne B\)

Haizz không bít có làm sai không mà nhìn rối lắm không muốn check lại ai làm thì so giùm đáp án 

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

21 tháng 12 2015

Đề:  Biết  \(8x^3+12x^2y+6xy^2+y^3=27\) . Tính  \(A=x\left(2x+y\right)+xy+\frac{1}{2}y^2\)

                                                     -------------------------

Ta có:

\(8x^3+12x^2y+6xy^2+y^3=27\)

\(\Leftrightarrow\)  \(\left(2x+y\right)^3=27\)

\(\Leftrightarrow\)  \(2x+y=3\)

Do đó:

\(A=3x+xy+\frac{1}{2}y^2\)

\(=3x+\frac{1}{2}y\left(2x+y\right)\)

\(=3x+\frac{3}{2}y\)

\(=\frac{3}{2}\left(2x+y\right)\)

\(A=\frac{9}{2}\)

21 tháng 12 2015

hic nhìu mà khó nữa *_*

13 tháng 7 2016

P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1) 
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz 
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2... 
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2... 
= (y^2-z)(-x^3+xy-yz^2+x^2z^2) 
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)] 
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến

14 tháng 9 2016

x2 - x - y2 - y

= (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)

***

9x2 + y2 - 16z2 + 6xy

= (3x + y)2 - (4z)2

= (3x + y - 4z)(3x + y + 4z)

***

a3 - a2x - ay + xy

= a2(a - x) - y(a - x)

= (a - x)(a2 - y)

***

2x2 - 8y2 + 3x + 6y

= 2(x2 - 4y2) + 3(x + 2y)

= 2(x - 2y)(x + 2y) + 3(x + 2y)

= (x + 2y)(2x - 4y + 3)

***

xy(x + y) + yz(y + z) + xz(x + z) + 2xyz

= xy(x + y + z) + yz(x + y + z) + xz(x + z)

= y(x + y + z)(x + z) + xz(x + z)

= (x + z)(xy + y2 + yz + xz)

= (x + z)[y(x + y) + z(x + y)]

= (x + z)(x + y)(y + z)