Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3
Vì (a^2 + b^2 ) chia hết cho 3 nên a^2 chia hết cho 3 , b^2 chia hết cho 3 ,
Mà a^2 chia hết cho 3 nên a cũng chia hết cho 3 , b^2 chia hết cho 3 nên b cũng chia hết cho 3
Vậy a và b cùng chia hết cho 3
Em phải học hằng đảng thức lớp 8
Anh giải cho :
ta có:
<=> \(a^2-2ab+b+ab⋮9\)
<=> \(\left(a-b\right)^2+ab⋮9\)
=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)
Xét \(\left(a-b\right)^2⋮9\)
<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)
Xét \(ab⋮9\)
<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)
Từ (1) và (2) => \(a⋮3\)
\(b⋮3\)
Answer:
Ta có:
\(a^2-ab+b^2⋮9⋮3\)
\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2⋮3\)
\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)
\(\Rightarrow\left(a+b\right)^2⋮9\)
Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)
\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)
Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3
Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)
a.b-a.c+b.c-c2=-1
a.b-a.c+b.c-c.c=-1
a.(b-c)+c.(b-c)=-1
(b-c).(a+c)=-1
Mà a;b;c\(\in\)Z
=>b-c=-1;a+c=1
b=-1+c;a=1-c
=>a đối b
Hoặc b-c=1;a+c=-1
b=1+c;a=-1-c
=>a đối b
=>a;b đối nhau khi a.b-a.c+b.c-c2=-1
Chúc bn học tốt
\(ab-ac+bc-c^2=-1\)\(\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
mà \(1+\left(-1\right)=0\)\(\Rightarrow\left(a+c\right)+\left(b-c\right)=0\)
\(\Leftrightarrow a+c+b-c=0\)\(\Leftrightarrow a+b=0\)
Vậy a và b là 2 số đối nhau
A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)
=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)
=15(2+25+29+...+217)
=30.(1+2⁴+28+...+216) chia hết cho 10
=> A có tận cùng là 0
b) Có a-5b chia hết cho 17
=> 10(a-5b) chia hết cho 17.
=> 10a-50b chia hết cho 17.
Mà 51b= 17×3b chia hết cho 17
=> 10a-50b+51b chia hết cho 17
=> 10a+b chia hết cho 17
nhóm 2 đầu 2 sau