Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Mình nghĩ điều kiện sửa thành $a,b\in\mathbb{N}$ thôi thì đúng hơn.
ĐKĐB $\Leftrightarrow \log_2[(2x+1)(y+2)]^{y+2}=8-(2x-2)(y+2)$
$\Leftrightarrow (y+2)\log_2[(2x+1)(y+2)]=8-(2x-2)(y+2)$
$\Leftrightarrow (y+2)[\log_2[(2x+1)(y+2)]+(2x-2)]=8$
$\Leftrightarrow \log_2[(2x+1)(y+2)]+(2x-2)]=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+\log_2(y+2)+(2x+1)-3=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+(2x+1)=\frac{8}{y+2}+3-\log_2(y+2)=\frac{8}{y+2}+\log_2(\frac{8}{y+2})(*)$
Xét hàm $f(t)=\log_2t+t$ với $t>0$
$f'(t)=\frac{1}{t\ln 2}+1>0$ với mọi $t>0$
Do đó hàm số đồng biến trên TXĐ
$\Rightarrow (*)$ xảy ra khi mà $2x+1=\frac{8}{y+2}$
$\Leftrightarrow 8=(2x+1)(y+2)$
Áp dụng BĐT AM-GM:
$8=(2x+1)(y+2)\leq \left(\frac{2x+1+y+2}{2}\right)^2$
$\Rightarrow 2\sqrt{2}\leq \frac{2x+y+3}{2}$
$\Rightarrow 2x+y\geq 4\sqrt{2}-3$
Vậy $P_{\min}=4\sqrt{2}-3$
$\Rightarrow a=4; b=2; c=-3$
$\Rightarrow a+b+c=3$
Đáp án B.
2.
\(\Leftrightarrow\left(y+2\right)log_2\left(2x+1\right)\left(y+2\right)=8-\left(2x-2\right)\left(y+2\right)\)
\(\Leftrightarrow log_2\left(2x+1\right)\left(y+2\right)=\frac{8}{y+2}-2x+2\)
\(\Leftrightarrow log_2\left(2x+1\right)+log_2\left(y+2\right)=\frac{8}{y+2}-2x+2\)
\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=-log_2\left(y+2\right)+3+\frac{8}{y+2}\)
\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=log_2\left(\frac{8}{y+2}\right)+\frac{8}{y+2}\)
Xét hàm \(f\left(t\right)=log_2t+t\Rightarrow f'\left(t\right)=\frac{1}{t.ln2}+1>0;\forall t>0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow2x+1=\frac{8}{y+2}\)
\(\Rightarrow2x=\frac{8}{y+2}-1=\frac{6-y}{y+2}\)
\(\Rightarrow P=2x+y=y+\frac{6-y}{y+2}=y+\frac{8}{y+2}-1\)
\(\Rightarrow P=y+2+\frac{8}{y+2}-3\ge2\sqrt{\frac{8\left(y+2\right)}{y+2}}-3=4\sqrt{2}-3\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-3\end{matrix}\right.\) \(\Rightarrow a+b+c=3\)
1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)
\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
x y O
b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
x y A B O
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.
Lời giải:
Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)
Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:
\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)
Giả sử \(a=\log_yx=3\) và \(b=\log_xy=\frac{1}{3}\)
\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D
5.
\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)
BBT:
Từ BBT ta có \(y_{min}=y\left(5\right)=7\)
\(\Rightarrow m=7\)
3.
\(y'=-2x^2-6x+m\)
Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)
\(\Leftrightarrow\Delta'=9+2m\le0\)
\(\Rightarrow m\le-\frac{9}{2}\)
4.
\(y'=x^2-mx-2m-3\)
Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)
\(\Leftrightarrow x^2-mx-2m-3\ge0\)
\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)
\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)
Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)
\(g\left(-1\right)=-2\Rightarrow m\le-2\)
Câu 1: Là \(ln^2x+lnx\) hay \(lnx^2+lnx\) bạn, hai cái này khác nhau lắm, viết thế kia chẳng hiểu gì cả. Biểu thức logarit nếu viết mũ, thì hoặc là viết thế này \(ln^2x\) hoặc là \(\left(lnx\right)^2\), nếu viết \(ln\left(x\right)^2\) người ta sẽ mặc định hiểu là \(ln\left(x^2\right)\)
Chắc là cái đầu, vậy ta biến đổi được:
\(lnx\left(lnx+1\right)=lnx\left(lnx+lne\right)=lnx.ln\left(x.e\right)=ln\left(x.e\right)^{lnx}\)
Câu 2: đạo hàm 4 cái ra, dễ dàng nhận ra ở đáp án d, với \(x\ge0\Rightarrow f'\left(x\right)=3x^2+4x+\frac{1}{2\sqrt{x}}>0\) luôn đồng biến nên hàm không có cực trị
Câu 3:
Phương trình hoành độ giao điểm:
\(\frac{m-x}{x+1}=2x+m\Leftrightarrow m-x=2x^2+\left(m+2\right)x+m\)
\(\Leftrightarrow2x^2+\left(m+3\right)x=0\)
Phương trình luôn có nghiệm \(x=0\) hay ít nhất 1 trong 2 điểm A; B sẽ trùng gốc tọa độ tức \(OA=0\) hoặc \(OB=0\)
Do đó ko tồn tại m thỏa mãn
Câu 4:
\(\left\{{}\begin{matrix}lnx=X\\lny=Y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2X^2+3Y^2=5\\X+4Y=3\end{matrix}\right.\)
\(\Rightarrow2\left(3-4Y\right)^2+3Y^2=5\)
\(\Leftrightarrow35Y^2-48Y+13=0\Rightarrow\left[{}\begin{matrix}Y=1\Rightarrow X=-1\\Y=\frac{13}{35}\Rightarrow X=\frac{53}{35}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}lnx=-1\\lny=1\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(e^{-1};e\right)\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\d=1\end{matrix}\right.\)
Hoặc \(\left\{{}\begin{matrix}lnx=\frac{53}{35}\\lny=\frac{13}{35}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=e^{\frac{53}{35}}=e\sqrt[35]{e^{18}}\\y=e^{\frac{13}{35}}=\sqrt[35]{e^{13}}\end{matrix}\right.\) \(\Rightarrow a=b=35\)
Đáp án b sai