K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

Vì a, b không chia hết cho 3 nên a, b có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\inℤ\right)\)

* Nếu \(a=3k+1\)\(\Rightarrow\)\(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1 

\(b=3k+1\)\(\Rightarrow\)\(b^2=\left(3k+1\right)^2=9k^2+1\) chia 3 dư 1 

* Nếu \(a=3k+2\)\(\Rightarrow\)\(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(b=3k+2\)\(\Rightarrow\)\(b^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(\Rightarrow\)\(a^2,b^2\) chia 3 dư 1 

\(\Rightarrow\)\(a^2-b^2⋮3\)

Lại có : 

\(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left[\left(a^4-2a^2b^2+b^4\right)+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Xét \(\left(a^2-b^2\right)⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2+3a^2b^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮9\)

Hay \(a^6-b^6⋮9\) ( đpcm ) 

Chúc bạn học tốt ~ 

27 tháng 7 2018

Vì a không chia hết cho 3 => a có dạng 3k+1 hoặc 3k+2 (k thuộc Z)

- Nếu \(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1

- Nếu \(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+1\) chia 3 dư 1

=> nếu a không chia hết cho thì a2 chia 3 dư 1 (1)

CM tương tự ta có nếu b không chia hết cho 3 thì b2 chia 3 dư 1 (2)

Từ (1) và (2) => \(a^2-b^2⋮3\) (3)

Lại có: \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left(a^4-2a^2b^2+b^4+3a^2b^2\right)=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Từ (3) => \(\left(a^2-b^2\right)^2⋮3\)

Mà \(3a^2b^2⋮3\)

\(\Rightarrow\left(a^2-b^2\right)^2+3a^2b^2⋮3\) (4)

Từ (3) và (4) => \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮3.3=9\) hay \(a^6-b^6⋮9\) (đpcm)

6 tháng 1 2016

Vì  \(a\)  không chia hết cho  \(3\) nên  \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\)   \(\left(k\in Z\right)\)

Nếu  \(a=3k+1\)  thì  \(a^2=\left(3k+1\right)^2=9k^2+6k+1\)  chia  \(3\)  dư  \(1\)   

Nếu  \(a=3k+2\)  thì  \(a^2=\left(3k+2\right)^2=9k^2+9k+8\)  chia  \(3\)  dư  \(1\)   

Vậy,  nếu  \(a\)  không chia hết cho  \(3\)   thì  \(a^2\)  chia  \(3\)  dư  \(1\)   \(\left(1\right)\)

Tương tự,   ta cũng có nếu  \(b\) không chia hết cho  \(3\) thì  \(b^2\) chia  \(3\)  dư  \(1\)  \(\left(2\right)\)

Từ   \(\left(1\right)\) và  \(\left(2\right)\) , suy ra  \(a^2-b^2\)  chia hết cho  \(3\)   \(\left(3\right)\)

Ta có:   \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)

Theo  chứng minh trên,   \(a^2-b^2\)  chia hết cho  \(3\)  nên   \(\left(a^2-b^2\right)^2\)  chia hết cho  \(3\)  

Lại có:   \(3a^2b^2\)  chia hết cho  \(3\)  với mọi  \(a;b\in Z\)

nên   \(\left(a^2-b^2\right)+3a^2b^2\)  chia hết cho  \(3\)   \(\left(4\right)\)

Từ  \(\left(3\right)\)  và  \(\left(4\right)\)  suy ra  \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)  chia hết cho   \(3.3\)  hay  \(a^6-b^6\)  chia hết cho  \(9\)  \(\left(đpcm\right)\)

 

 

6 tháng 1 2016

a^6-b^6=(a^3-b^3)(a^3+b^3)=(a-b)(a^2+ab+b^2)(a+b)(a^2-ab+b^2)       dung hang dang thuc

Vi a,b ko chia het cho 3 (1)

suy ra TH1 a=3k+1, b=3q+2 hoacTH2 a=3k+2, b=3q+1

TH1

a+b=3k+3q+3 chia het cho 3 

a^2 va b^2 la so chinh phuong nen chia 3 du 0 hoac 1 ma a,b ko chia het cho 3

suy ra a^2, b^2 chia 3 du 1

suy ra a^2+b^2 chia 3 du 2

Lai co a=3k+1, b=3q+2 suy ra ab chia 3 du 2

Tu do suy ra a^2-ab+b^2 chia het cho 3  (2)

tu 1 va 2 so chia het cho 9

TH2 tuong tu

 

26 tháng 12 2020

Ta có a3 - 5b3

= (a3 + b3) - 6b3

= (a + b)(a2 - ab + b2) - 6b3

Vì \(\hept{\begin{cases}\left(a+b\right)\left(a^2-ab+b^2\right)⋮6\left(\text{Vì }a+b⋮6\right)\\6b^3⋮6\end{cases}}\Rightarrow a^3-5b^3⋮6\)

31 tháng 10 2016

Violympic toán 8

a)

b) đặt A=a^5b-ab^5=a(a^4b-b^5)=a(b(a^4-b^4))=ab... chia hết cho 2 (1)
+) Nếu a,b đồng du khi chia cho 3 thi a-b chia het cho 3 suy ra A chia het cho 3 (2)
+) Nếu a,b ko dong du khi chia cho 3 thi a+b chia het cho 3 suy ra Âchi het cho 3 (3)
Tu (2),(3) suy ra A luon chia het cho 3 (4)
Ma ab(a-b)(a+b)(a^2+b^2) chia het cho 5 (5)
Tu (1),(4),(5) suy ra A chia het cho 2;3;5 Vậy A chia het cho 30

30 tháng 10 2016

phân tích đa thức thành nhân tử bn ơi

 

25 tháng 11 2017

a) \(A=a^3b-ab^3=\left(a^3b-ab\right)-\left(ab^3-ab\right)\)

      \(=b.a\left(a^2-1\right)-a\left(b^3-b\right)\)

      \(=a\left(a-1\right)\left(a+1\right)b-a\left(b-1\right)b\left(b+1\right)\)

\(Do:\)\(a-1\) \(;\)\(a\) \(;\) \(a+1\) là 3 số liên tiếp nên :

     \(\left(a-1\right)a\left(a+1\right)\) \(⋮6\)

Tương tự : \(\left(b-1\right)b\left(b+1\right)\) \(⋮6\)

\(\Rightarrow\) \(A\) \(⋮\)\(6\)

25 tháng 11 2017

ak thak you bn