Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{OBA}+\widehat{OCA}=90^o\)
=> OBAC nội tiếp
b) Xét tam giác AEB và tam giác ABD
Có: \(\widehat{BAD}\)chung
\(\widehat{ADB}=\widehat{ABE}=\frac{1}{2}sđ\widebat{BE}\)
=> Tam giác AEB đồng dạng tam giác ABD (g.g)
=> \(\frac{AE}{AB}=\frac{AB}{AD}\)=>AB2=AE.AD (đpcm)
c) Kẽ BE cắt AC tại S
CE cắt AB tại P
Ta có:\(\hept{\begin{cases}\widehat{BEP}=\widehat{CES}=\frac{1}{2}sđ\widebat{BC}\\\widehat{AEP}=\widehat{CED}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)(1)
Mặt khác: \(\hept{\begin{cases}\widehat{BDC}=\widehat{BCA}=\frac{1}{2}sđ\widebat{BC}\\\widehat{DBC}=\widehat{BCA}\left(slt\right)\end{cases}}\)
=> \(\widehat{BDC}=\widehat{DBC}\)
=> Tam giác BDC cân tại C
=> CD=BC
=> \(\widebat{CD}=\widebat{BC}\)(2)
Từ (1),(2) => \(\widehat{BEP}=\widehat{AEP}\)
=> Tia đổi của tia EC là tia phân giác của góc BEA
Ta có AB,AC là tiếp tuyến của (O)
\(\Rightarrow AB\perp OB,AC\perp OC,AO\perp CB\)
\(\Rightarrow ABOC\) nội tiếp đường tròn đường kính AO (1)
Vì \(BD\perp BC\Rightarrow AO//DE\left(\perp BC\right)\Rightarrow\widehat{DBC}=90^0\) = > CD là đường kính của (O)
Mà \(EO\perp CD,BC\perp DE\Rightarrow\widehat{EBC}=\widehat{EOC}=90^0\)
\(\Rightarrow ECOB\) nội tiếp (2)
Từ (1) , (2) \(\Rightarrow A,E,B,O,C\) nội tiếp đường tròn đường kính AO
\(\Rightarrow EAOB\) nội tiếp
\(\Rightarrow\widehat{EAO}+\widehat{EBO}=180^0\)
Mà \(\widehat{EBO}+\widehat{BOA}=180^0\left(BE//AO\right)\)
\(\Rightarrow\widehat{EAO}=\widehat{BOA}\)
\(\Rightarrow AOBE\) là hình thang cân
Đường tròn c: Đường tròn với tâm O và bán kính 3 Đoạn thẳng g: Đoạn thẳng [O, M] Đoạn thẳng i: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [C, D] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [B, C] Đoạn thẳng p: Đoạn thẳng [A, E] Đoạn thẳng q: Đoạn thẳng [C, E] Đoạn thẳng r: Đoạn thẳng [O, E] Đoạn thẳng s: Đoạn thẳng [O, C] Đoạn thẳng b: Đoạn thẳng [C, F] Đoạn thẳng d: Đoạn thẳng [D, F] Đoạn thẳng g_1: Đoạn thẳng [F, H] Đoạn thẳng h_1: Đoạn thẳng [B, H] Đoạn thẳng k_1: Đoạn thẳng [K, B] Đoạn thẳng l_1: Đoạn thẳng [H, K] Đoạn thẳng m_1: Đoạn thẳng [A, K] Đoạn thẳng n_1: Đoạn thẳng [C, H] O = (-2.32, 5.92) O = (-2.32, 5.92) O = (-2.32, 5.92) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm M: Điểm trên ĐườngTròn(O, 1) Điểm M: Điểm trên ĐườngTròn(O, 1) Điểm M: Điểm trên ĐườngTròn(O, 1) Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, h Điểm E: Giao điểm đường của m, n Điểm E: Giao điểm đường của m, n Điểm E: Giao điểm đường của m, n Điểm F: Giao điểm đường của t, a Điểm F: Giao điểm đường của t, a Điểm F: Giao điểm đường của t, a Điểm H: Giao điểm đường của e, f_1 Điểm H: Giao điểm đường của e, f_1 Điểm H: Giao điểm đường của e, f_1 Điểm K: Giao điểm đường của i_1, j_1 Điểm K: Giao điểm đường của i_1, j_1 Điểm K: Giao điểm đường của i_1, j_1
a) AB là đường kính, C thuộc đường tròn nên \(\widehat{ACB}=90^o\) hay tam giác ABC vuông tại C.
Áp dụng hệ thức lượng trong tam giác vuông, ta có
\(BC^2=MB.AB=2.6=12\Rightarrow BC=\sqrt{12}\left(cm\right)\)
b) Xét tam giác cân OAC có OE là đường cao nên đồng thời là phân giác.
Từ đó ta có \(\Delta AOE=\Delta COE\left(c-g-c\right)\Rightarrow\widehat{ECO}=\widehat{EAO}=90^o\)
Vậy EC là tiếp tuyến của (O) tại C.
c) Xét tam giác AFK, ta thấy ngay B là trực tâm nên \(AK\perp FD\). Lại có \(AD\perp FD\), vậy A, D, F thẳng hàng.
Ta thấy ngay AH là phân giác góc \(\widehat{FAK}\) mà lại là đường cao, vậy tam giác AH đồng thời là trung trực của FK.
B thuộc AH, vậy BF = BK hay tam giác FBK cân tại B.
d) Ta có tứ giác ACHK nội tiếp nên \(\widehat{HCF}=\widehat{AKF}=\widehat{AFK}\) (Tam giác AFK cân)
Ta cũng có \(\widehat{ACO}=\widehat{OAC}\)(Tam giác AOC cân)
Vậy nên \(\widehat{HCF}+\widehat{OCA}=\widehat{CHF}+\widehat{CAO}=90^o\Rightarrow\widehat{OCH}=90^o\)
Vậy thì \(\widehat{ECH}=\widehat{ECO}+\widehat{OCH}=180^o\) hay H, C, E thẳng hàng.