Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 và Bài 2 dễ, bn có thể tự làm được!
Bài 3:
a) ta có: 1020 = (102)10 = 10010
=> 10010>910
=> 1020>910
b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)
(-3)50 = 350 = (35)10= 24310
=> 12510 < 24310
=> (-5)30 < (-3)50
c) ta có: 648 = (26)8= 248
1612 = ( 24)12 = 248
=> 648 = 1612
d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
ta có
\(3^{1+2+3+..+x}=3^{3.12}\Leftrightarrow\frac{x\left(x+1\right)}{2}=36\)
\(\Leftrightarrow x.\left(x+1\right)=72=8.9\Leftrightarrow x=8\)
b. ta có
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}=\left(\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\right)+1-\frac{1}{5^{2017}}\)
\(=A+1-\frac{1}{5^{2017}}\Rightarrow4A=1-\frac{1}{5^{2017}}< 1\Rightarrow A< \frac{1}{4}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
\(\left|x-\frac{1}{3}\right|\ge0\) (dấu = xảy ra \(\Leftrightarrow\) x = \(\frac{1}{3}\))
Suy ra A = \(\left|x-\frac{1}{3}\right|+\frac{1}{4}\ge\frac{1}{4}>\frac{1}{5}\)
Vậy A > \(\frac{1}{5}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{10}-1\right)\)
\(\Rightarrow A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-9}{10}\)
\(\Rightarrow A=\frac{-1}{10}\)
Dễ thấy \(\frac{1}{10}< \frac{1}{9}\Rightarrow\frac{-1}{10}>\frac{-1}{9}\)
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}.....\frac{-9}{10}\)
\(A=\frac{-1}{10}\)
\(\frac{-1}{10}>\frac{-1}{9}\Rightarrow A>\frac{-1}{9}\)
đ/s:..
lx-1/3l>(=)0
=>lx-1/3l+1/4>(=)1/4+0=1/4>1/5
=>A>1/5
Vậy A>1/5