\(=\)\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{2}}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

a)\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{2}}\right).\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\left(ĐKXĐ:x\ne1;x\ge0\right)\)

\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\right]\)

\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}.\left[\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2\right]}{x-1}\right]\)

\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{x-1}\right]\)

\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{\sqrt{x}\left(2\sqrt{x}\right)\left(-2\right)}{x-1}\right]\)

\(=\frac{\sqrt{2x}-1}{2\sqrt{2}}.\left[\frac{-4x}{x-1}\right]\)

\(=\frac{-\sqrt{2x}\left(\sqrt{2x}-1\right)}{\left(x-1\right)}\)

\(=\frac{\sqrt{2x}-2x}{\left(x-1\right)}\)

19 tháng 8 2020

Bài 1 : 

a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}+1}{x}\)

b) \(P>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)

\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)

\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)

\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)

Vậy P > 1/2 với mọi x> 0 ; x khác 1

19 tháng 8 2020

Bài 2 : 

a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)

\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)

\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)

b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )

Thay a vào biểu thức K , ta có :

\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)

21 tháng 8 2018

\(A=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)

\(\Leftrightarrow A=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left[\left(\frac{1}{2\sqrt{x}}\right)^2-2.\frac{1}{2\sqrt{x}}.\frac{\sqrt{x}}{2}+\left(\frac{\sqrt{x}}{2}\right)^2\right]\)

\(\Leftrightarrow A=\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right]\left(\frac{1}{4x}-\frac{1}{2}+\frac{x}{4}\right)\)

\(\Leftrightarrow A=\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\left(\frac{1}{4x}-\frac{2x}{4x}+\frac{x^2}{4x}\right)\)

\(\Leftrightarrow A=\frac{-4\sqrt{x}}{x-1}.\frac{\left(1-x\right)^2}{4x}\)

\(\Leftrightarrow A=\frac{4\sqrt{x}}{1-x}.\frac{\left(1-x\right)^2}{4x}\)

\(\Leftrightarrow A=\frac{1-x}{\sqrt{x}}\)

b) \(\frac{A}{\sqrt{x}}>1\)

\(\Leftrightarrow\frac{1-x}{\frac{\sqrt{x}}{\sqrt{x}}}>1\)

\(\Leftrightarrow1-x>1\Leftrightarrow x< 0\)

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)