Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)
b: Vì x+căn x+1>0
nên A>0
d/ Ta có:
\(A=\left(-x+\sqrt{x}-\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=\dfrac{1}{4}-\left(\sqrt{x}-\dfrac{1}{2}\right)^2\le\dfrac{1}{4}\)
Vậy GTLN là \(A=\dfrac{1}{4}\) đạt được tại \(x=\dfrac{1}{4}\)
b/ \(\sqrt{1x}-x\)
c/ Ta có:
x < 1
\(\Rightarrow\sqrt{x}< 1\)
\(\Rightarrow1-\sqrt{x}>0\)
Ta lại có: x > 0
\(\Rightarrow A=\sqrt{x}-x=\sqrt{x}\left(1-\sqrt{x}\right)>0\)
a) ĐKXĐ: x ≥ 0; x ≠ 1
A = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
= \(\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)
= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)
=\(\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
= \(2\sqrt{x}.\dfrac{\sqrt{x}-1}{2}\)
= \(\sqrt{x}\left(\sqrt{x}-1\right)\)
b) Để A > 0 ⇔ \(\sqrt{x}\left(\sqrt{x}-1\right)\)> 0
⇔ \(\begin{cases} x > 0\\ \sqrt{x}-1>0 \end{cases}\) (vì \(\sqrt{x}\) ≥ 0)
⇔ \(x>1\)
Vậy A > 0 ⇔ x > 1
c) Có A = \(\sqrt{x}\left(\sqrt{x}-1\right)\) = \(x-\sqrt{x}\)
= \(x-2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}\)
= \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
Thấy \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\) ≥ \(-\dfrac{1}{4}\) ∀ x ≥ 0 Hay A ≥ \(-\dfrac{1}{4}\) ∀ x ≥ 0 và x ≠ 1
Dấu '' = '' xảy ra ⇔ \(\sqrt{x}-\dfrac{1}{2}=0\) ⇔ \(x=\dfrac{1}{4}\) (thỏa mãn điều kiện)
GTNN của A là \(-\dfrac{1}{4}\) tại \(x=\dfrac{1}{4}\)
(Mình xin thay đổi đề bài phần c một chút nhé! Mình nghĩ với x càng lớn thì A sẽ càng lớn nên A không có giá trị lớn nhất)
Học toán vui vẻ!
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b: Để A>0 thì -(căn x-1)>0
=>căn x<1
=>0<=x<1
c: \(A=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/4
a) điều kiện xác định : \(x\ge0;x\ne1\)
ta có : \(A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(\Leftrightarrow A=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(\Leftrightarrow A=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(1-x\right)^2}{2}\) \(\Leftrightarrow A=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)\left(x-1\right)}{2}\)
\(\Leftrightarrow A=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)
b) để \(A>0\Leftrightarrow-x+\sqrt{x}>0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}\ne0\\1-\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\1>x\end{matrix}\right.\) \(\Leftrightarrow0< x< 1\)
c) ta có : \(A=-x+\sqrt{x}=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow A_{max}=\dfrac{1}{4}\) dấu "=" xảy ra khi \(x=\dfrac{1}{4}\)
a) điều kiện xác định : \(x>0;x\ne1\)
ta có : \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x}{2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{x-1}\right)=-2\sqrt{x}\)
b) để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0< x< 9\) và \(x\ne1\)
vậy ....
Nguyễn Huy Tú và phương An chắc h o onl đâu .
h bn nên tag DƯƠNG PHAN KHÁNH DƯƠNG ; Nhã Doanh ; Nguyễn Thanh Hằng ...
Na : tối mk về mk lm cho , h mk bận rồi