K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

a là số tự nhiên nên a có 2 dạng: 2k và 2k + 1

TH1: a = 2k  

Lúc đó \(a^2=4k^2⋮4\)(dư 0)

TH1: a = 2k + 1

Lúc đó \(a^2=\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)chia 4 dư 1

3 tháng 9 2019

ミ★Ɱαɾαкαї ★彡:Bạn làm sai rồi kìa.Một số nguyên chia cho 4 thì có 3 số dư mà.Bạn phải xét các  trường hợp chia 4 dư \(0,1,2,3\)

Nếu làm theo cách bạn thì khi chia cho 5 hoặc 6 thì sẽ thiếu trường hợp.

THÔI,làm luôn đi cho rồi chuyện:v

Với \(a=4k\) thì \(a^2=\left(4k\right)^2=16k^2⋮4\)

Với \(a=4k+1\) thì \(a^2=\left(4k+1\right)^2=16k^2+8k+1\) chia 4 dư 1

Với \(a=4k+2\) thì \(a^2=\left(4k+2\right)^2=16k^2+16k+4⋮4\)

Với \(a=4k+3\) thì \(a^2=\left(4k+3\right)^2=16k^2+24k+8+1\) chia 4 dư 1

31 tháng 8 2019

a.Ta có a /4 dư 2 là 6

           b/4 dư 1 là 5

Vậy a*b=6*5=30 chia 4 dư 2

b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1

c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1

31 tháng 8 2019

a) Vì a chia 4 dư 2 nên a = 4k + 2 

        b chia 4 dư 1 nên b = 4t + 1 

a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2  chia 4 dư 2

Vậy ab chia 4 dư 2

b) Vì a là số lẻ nên a = 2k + 1

a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1

Vậy a² chia 4 dư 1 

c) Vì a² là số chính phương ( a là số tự nhiên )

suy ra a² chia 4 dư 0 hoặc 1

23 tháng 7 2017

Đặt thương của a chia 5 là x 

=> Số a là: 5x + 4

=> \(a^2\)=\(\left(5x+4\right)^2\)=\(25x^2+40x+16\)

Vì \(25x^2\)chia hết cho 5 ( 25 chia hết cho 5 )

\(40x\)chia hết cho 5 ( 40 chia hết cho 5 ) => \(25x^2+40x\)chia hết cho 5 

\(16\)chia 5 dư 1

=> \(25x^2+40x+16\)chia 5 dư 1 

Vậy \(a^2\)chia 5 dư 1

23 tháng 7 2017

a chia 5 dư 4 => a = 5k + 4 [k ∈ N]

=> a2 = [5k + 4]2 = 25k2 + 40k + 16 = 25k2 + 40k + 15  + 1 =- 5[5k2 + 8k + 3] + 1 chia 5 dư 1 => ĐPCM

15 tháng 9 2019

Vì a chia cho 5 dư 4

\(\Rightarrow a=-1\left(mod5\right)\)

\(\Rightarrow a^2=1\left(mod5\right)\)

Vậy \(a^2\)chia cho 5 dư 1( đpcm)

15 tháng 9 2019

Ta có: \(a\equiv\left(-1\right)\left(mod5\right)\)

\(\Rightarrow a^2\equiv\left(-1\right)^2\left(mod5\right)\)

\(\Rightarrow a^2\equiv1\left(mod5\right)\)

\(\Rightarrow\)\(a^5\div5\)dư 1 \(\left(đpcm\right)\)

21 tháng 7 2017

Vì số tự nhiên a chia cho 5 dư 4 nên a có dạng \(a=5k+4\)

Ta có \(a^2=\left(5k+4\right)^2=25k^2+40k+16=5\left(5k^2+8k+3\right)+1\)

Ta thấy \(5\left(5k^2+8k+1\right)⋮5\forall k\)

\(\Rightarrow\left[5\left(5k^2+8k+1\right)+1\right]⋮5\)dư 1

Vậy \(a^2\)chia cho 5 dư 1

26 tháng 6 2015

\(P=\left(x^2+mx+1\right)^2\) hoặc \(P=\left(x^2+mx-1\right)\)do hệ số \(x^4\)là 1; hệ số tự do là 1

+Với \(P=\left(x^2+mx+1\right)^2=x^4+2mx^3+\left(m^2+2\right)x^2+2mx+1=x^4+ax^3+bx^2-8x+1\)\(\Rightarrow2m=-8;a=2m;b=m^2+2\)

\(\Rightarrow m=-4;a=-8;b=18\)

+Với 

\(P=\left(x^2+mx-1\right)^2=x^4+2mx^3+\left(m^2-2\right)x^2-2mx+1\)

Làm tương tự được m = 4; a = 8; b = 14

8 tháng 8 2019

Theo đề bài, ta có:

\(a\div5\) dư  \(4\) mà số có chữ số tận cùng là \(0\) hoặc \(5\) thì chia hết cho \(5\) dư \(4\Rightarrow\left\{\overline{...4},\overline{...9}\right\}\div5\) dư \(4\Rightarrow a^2=\left\{\overline{...4}^2,\overline{...9}^2\right\}\) 

Mà \(4^2=16\) chia \(5\) dư \(1;\)

      \(9^2=81\) chia \(5\) dư \(1\)

\(\Rightarrow a^2\div5\) dư \(1\)

8 tháng 8 2019

Đặt a=5x+4

a2=(5x+4)2=25x2+40x+16

Vì 25x2 chia hết cho 5, 40x chia hết cho 5, 16 chia 5 dư 1 suy ra a2 chia 5 dư 1.

24 tháng 6 2016

đặt a=5k+4

=>a^2=(5k+4)^2

=25k^2+10k+16

vì 25k^2 và 10k chia hết cho 5,16 chia 5 dư 1

=>a^2 chia 5 dư 1

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .