Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
a, Ta có: \(\dfrac{32}{37}>\dfrac{32}{54}>\dfrac{19}{54}\Rightarrow\dfrac{32}{37}>\dfrac{19}{54}\)
b, Ta có: \(\dfrac{18}{53}>\dfrac{18}{54}=\dfrac{1}{3}\Rightarrow\dfrac{18}{53}>\dfrac{1}{3}\left(1\right)\)
\(\dfrac{26}{78}=\dfrac{1}{3}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{18}{53}>\dfrac{26}{78}\)
c, Ta thấy: \(\dfrac{25}{103}< \dfrac{25}{100}=\dfrac{1}{4}\left(1\right)\)
\(\dfrac{74}{295}>\dfrac{74}{296}=\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{25}{103}< \dfrac{74}{295}\)
Bài 1 ) \(P=\left|x-1\right|+5\)
Ta có : \(\left|x-1\right|\ge0\)
\(\Leftrightarrow\left|x-1\right|+5\ge5\)
Dấu " = " xảy ra khi và chỉ khi \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(Min_P=5\Leftrightarrow x=1\)
Bài 2 ) \(Q=7-\left|5-x\right|\)
Ta có : \(\left|5-x\right|\ge0\)
\(\Rightarrow7-\left|5-x\right|\le7\)
Dấu " = " xảy ra khi và chỉ khi \(5-x=0\)
\(\Leftrightarrow x=5\)
Vậy \(Max_Q=7\Leftrightarrow x=5\)
Link này bạn: Câu hỏi của Quỳnh Anh Shuy - Toán lớp 7 | Học trực tuyến
Gọi phân số tối giản cần tìm là \(\dfrac{a}{b}\)
Ta có:\(\dfrac{a}{b}\):\(\dfrac{5}{11}\)=\(\dfrac{11a}{5b}\)
\(\dfrac{a}{b}\):\(\dfrac{11}{21}\)\(\dfrac{21a}{11b}\)
\(\dfrac{a}{b}\):\(\dfrac{25}{28}\)=\(\dfrac{28a}{25b}\)
Vì cả 3 thương trên là số tự nhiên nên a chia hết cho 5,11,25\(\)\(\Rightarrow\)a\(\in\)BCNN(5;11;25)\(\Rightarrow\)a=275
Do đó b\(\in\)ƯCLN(11,21,28)=1
Vậy phân số tối giản cần tìm là \(\dfrac{275}{1}\)
\(3^{x-1}=\frac{1}{243}\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
Ta có: \(\dfrac{5a+7b}{6a+5b}=\dfrac{29}{28}\\ \Rightarrow28\left(5a+7b\right)=29\left(6a+5b\right)\\ \Rightarrow140a+196b=174a+145b\\ =140a-174a=-196b+145b\\ =-31a=-51b\\ \Rightarrow\dfrac{a}{-51}=\dfrac{b}{-31}\\ \Rightarrow a:b=-51:\left(-31\right)\\ \Rightarrow\dfrac{a}{b}=\dfrac{-51}{-31}\Rightarrow\dfrac{a}{b}=\dfrac{51}{31}\\ \Rightarrow\dfrac{a}{b}=\dfrac{3}{2}\Rightarrow a=3;b=2\)
Vậy a=3 và b=2
hân chéo ta được:
28(5a+7b)=29(6a+5b)28(5a+7b)=29(6a+5b)
\Leftrightarrow 140a+196b=174a+145b140a+196b=174a+145b
\Leftrightarrow 51b=34a51b=34a
Vì a,b là 2 số nguyên tố cùng nhau và là số tự nhiên
\RightarrowƯCLN(51,34)=17ƯCLN(51,34)=17
Từ đây ta tính được a=3;b=2a=3;b=2
p/s: Cách làm trên chưa thật hợp lý, bạn có thể trình bày sao cho hiểu là được nhé !
x + a = a
x = 0