\(\sqrt{a}\)+1=(\(\sqrt{a}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(P=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{a-4}+\frac{3+2\sqrt{a}}{2-\sqrt{a}}-\frac{2-3\sqrt{a}}{\sqrt{a+2}}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\frac{3+2\sqrt{a}}{\sqrt{a}-2}-\frac{2-3\sqrt{a}}{\sqrt{a}+2}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)-\left(3+2\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(2-3\sqrt{a}\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{16\sqrt{a}-a-3\sqrt{a}-6-2a-4\sqrt{a}-2\sqrt{a}+4+3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}-2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}+2}\)

11 tháng 11 2018

b,Với ĐKXĐ,ta có: \(P=\frac{1}{\sqrt{a}-2}\)

Để P = 1/2

thì: \(\frac{1}{\sqrt{a}-2}=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{a}-2=2\)

\(\Leftrightarrow\sqrt{a}=4\)

\(\Leftrightarrow a=16\left(tm\right)\)

31 tháng 1 2020

\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)

31 tháng 1 2020

\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)

NV
5 tháng 3 2019

2/

a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)

b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" khi \(a=b=\frac{1}{4}\)

c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm

Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

Cộng vế với vế ta được:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)

Dấu "=" khi \(x=y=z\)

d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)

\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)

e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)

\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

5 tháng 3 2019

@Akai Haruma Cô giúp em với ạ!!!

14 tháng 7 2016

a) \(A=\sqrt{81}.\sqrt{\frac{9}{4}}+2\sqrt{16}-3=\sqrt{9^2}.\sqrt{\left(\frac{3}{2}\right)^2}+2\sqrt{4^2}-3=9.\frac{3}{2}+2.4-3=\frac{37}{2}\)

b) \(B=\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)

c) Không rút gọn được.

Bài 2 : Mình hướng dẫn thôi nhé ^^

a) \(M=x^2-10x+30=\left(x^2-10x+25\right)+5=\left(x-5\right)^2+5\ge5\)

b) \(N=4x^2-12x+1=\left[\left(2x\right)^2-12x+9\right]-8=\left(2x-3\right)^2-8\ge-8\)

c) \(P=x^2-x-1=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}-1=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

d) \(Q=16x^2-8x+3=\left[\left(4x\right)^2-8x+1\right]+2=\left(4x-1\right)^2+2\ge2\)

e) \(H=\frac{1}{9}x^2+3x-1=\left[\left(\frac{x}{3}\right)^2+2.\frac{x}{3}.\frac{9}{2}+\frac{81}{4}\right]-\frac{81}{4}-1=\left(\frac{x}{3}+\frac{9}{2}\right)^2-\frac{85}{4}\ge-\frac{85}{4}\)

\(A=\left(\frac{\sqrt{X}}{\sqrt{X}+1}+\frac{\sqrt{X}+1}{1-\sqrt{X}}+\frac{4\sqrt{X}+1}{X-1}\right)\left(\frac{X\sqrt{X}}{\sqrt{X}+1}-\sqrt{X}\right)\)

     \(=\left(\frac{\sqrt{X}-\sqrt{X}-1+4\sqrt{X}+1}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\right)\left(X-\sqrt{X}\right)\)

     \(=\frac{4\sqrt{X}}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}.\sqrt{X}\left(\sqrt{X}-1\right)\)

\(A=\frac{4X}{\sqrt{X}+1}\)

B) dễ rồi làm tiếp ik chỉ cần biến về \(\left(a+b\right)^2+hs\le hs\) là được

28 tháng 5 2019

Câu a  Bùi Vương chưa quy đồng thì phải

29 tháng 3 2019

Bài 1

a) \(A=\left(4-\sqrt{15}\right)\left(\sqrt{10}+\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\sqrt{\left(4-\sqrt{15}\right)\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}.\left(\sqrt{5}+\sqrt{3}\right).\sqrt{2}=\sqrt{\left(4-\sqrt{15}\right).\left(16-15\right).2}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{8-2\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{5-2\sqrt{5}.\sqrt{3}+3}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}.\left(\sqrt{5}+\sqrt{3}\right)=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

Ta có công thức tổng quát\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

Vậy \(B=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{15}+\sqrt{16}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{16}-\sqrt{15}=\sqrt{16}-\sqrt{1}=4-1=3\)

b) \(6x^4-7x^2-3=0\Leftrightarrow6x^4-9x^2+2x^2-3=0\Leftrightarrow3x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\Leftrightarrow\left(2x^2-3\right)\left(3x^2+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}2x^2-3=0\\3x^2+1=0\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(2x^2-3=0\Leftrightarrow2x^2=3\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\frac{\pm\sqrt{6}}{2}\)

Vậy S={\(\frac{-\sqrt{6}}{2};\frac{\sqrt{6}}{2}\)}