\(\geq\)0,b \(\geq\) 0.a2+b2=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Viết sai 1 số ;v, and I think là Max =))

\(A=\dfrac{bc\sqrt{a-1}+ac\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)

\(=\dfrac{bc\sqrt{1\left(a-1\right)}+\dfrac{ac\sqrt{4\left(b-4\right)}}{2}+\dfrac{ab\sqrt{9\left(c-9\right)}}{3}}{abc}\)

\(\le\dfrac{\dfrac{abc}{2}+\dfrac{abc}{4}+\dfrac{abc}{6}}{abc}=\dfrac{1}{2}+\dfrac{1}{1}+\dfrac{1}{6}=\dfrac{11}{12}\)

Vậy GTLN là.....

11 tháng 11 2017

Cảm ơn bạn,đúng rồi đấy

6 tháng 9 2021

a)\(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)<  1 <=> \(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)- 1 < 0 <=> \(\frac{\sqrt{X}+2-\sqrt{x}+3}{\sqrt{x}-3}\)< 0 <=> \(\frac{5}{\sqrt{x}-3}\)< 0 Mà 5 > 0

=> \(\sqrt{x}-3< 0\)<=> \(\sqrt{X}< 3\)<=> \(x< 9\)

Câu b làm tương tự nha

6 tháng 9 2021

b, \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\le2\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-3}-2\le0\)

\(\Leftrightarrow\frac{\sqrt{x}+2-2\sqrt{x}+6}{\sqrt{x}-3}\le0\Leftrightarrow\frac{-\sqrt{x}+8}{\sqrt{x}-3}\le0\)

TH1 : \(\hept{\begin{cases}8-\sqrt{x}\le0\\\sqrt{x}-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}\le-8\\\sqrt{x}\ge3\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ge8\\\sqrt{x}\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge64\\x\ge9\end{cases}\Leftrightarrow}x\ge64}\)

TH2 : \(\hept{\begin{cases}8-\sqrt{x}\ge0\\\sqrt{x}-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\le8\\\sqrt{x}\le3\end{cases}\Leftrightarrow\hept{\begin{cases}x\le64\\x\le9\end{cases}}\Leftrightarrow x\le9}\)

Kết hợp với đk : \(0\le x< 9\)

30 tháng 9 2018

Áp dụng BĐT Cô-si cho 2 số không âm

Ta có: \(\sqrt{9b\left(4a+b\right)}\)\(\le\) \(\dfrac{9b+4a+5b}{2}\)=\(\dfrac{14b+4a}{2}\)

\(\Rightarrow\) \(a\sqrt{9b\left(4a+5b\right)}\)\(\le\) \(\dfrac{14ab+4a^2}{2}\)=7ab+2a2

CMTT: \(b\sqrt{9a\left(4b+5a\right)}\) \(\le\) 7ab+2b2

\(\Rightarrow\) M\(\le\) 14ab + 2(a2+b2) \(\le\)7(a2+b2) + 2(a2+b2) = 9(a2+b2)=18

Vậy Mmin=18

Dấu "=" xảy ra\(\Leftrightarrow\) a=b=1

30 tháng 9 2018

\(M=a\sqrt{9b\left(4a+5b\right)}+b\sqrt{9a\left(4b+5a\right)}\le\dfrac{a\left(9b+4a+5b\right)}{2}+\dfrac{b\left(9a+4b+5a\right)}{2}=\dfrac{a\left(14b+4a\right)+b\left(14a+4b\right)}{2}=2a^2+7ab+7ab+2b^2=2\left(a^2+b^2\right)+14ab=4+14ab\le4+14\times\dfrac{a^2+b^2}{2}=4+14=18\)

Dấu "=" xảy ra <=> a = b = 1

28 tháng 4 2020

Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)

Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)

BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)

<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)

Áp dụng BĐT Schur ta có:

\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)

Khi đó BĐT 

<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)

<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)

<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c

26 tháng 5 2020

Bài 2 

Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)

Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)

=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

6 tháng 9 2021

a, ĐK :  \(x\ge0;x\ne4\)

b, \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)