\(\frac{x-13}{x+3}\)

a) Tìm x thuộc Z để A thuộc Z

b) Tìm x thuộc Z đ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)

\(\Rightarrow x+3-16⋮x+3\)

      \(x+3⋮x+3\)

\(\Rightarrow16⋮x+3\)

tự làm tiếp!

b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)

để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất

=> x+3 là số nguyên dương nhỏ nhất

=> x+3=1

=> x = -2

vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)

2 tháng 3 2022

.....

22 tháng 3 2018

a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)

\(\Rightarrow10x+20-7⋮2x+4\)

\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)

\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)

      \(5\left(2x+4\right)⋮2x+4\)

\(\Rightarrow7⋮2x-4\)

tới đây bn liệt kê Ư(7) rồi làm tiếp.

b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)

để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất

=> 2x+4 là số nguyên dương nhỏ nhất

+ xét 2x+4 = 1

=> 2x = -3

=> x = -1,5 loại vì x thuộc Z

+ xét 2x+4=2

=> 2x = -2

=> x = -1 (tm)

vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)

18 tháng 8 2018

a)

Để A thuộc Z thì ( dấu " : " là chia hết cho )

n + 1 : n - 2

n - 2 + 3 : n - 2

=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Sau đó tìm n là xong

18 tháng 8 2018

b) Cũng gần tương tự như phần a !

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất 

mà n nguyên ( theo đề bài )

=> 3 : n - 3

Ta có bảng :

n - 31-13-3
n4260

Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

21 tháng 2 2018

\(1)\)

Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)

Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)

Suy ra : 

\(a-1\)\(1\)\(-1\)\(13\)\(-13\)
\(a\)\(2\)\(0\)\(14\)\(-12\)

Vậy \(a\in\left\{2;0;14;-12\right\}\)

\(2)\)

Ta có : 

\(\frac{x}{5}=\frac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)

Do đó : 

\(\frac{x}{5}=2\Rightarrow x=2.5=10\)

\(\frac{y}{3}=2\Rightarrow y=2.3=6\)

Vậy x=10 và y=6

22 tháng 7 2018

\(A=\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}\)\(=\frac{-\left(x-3\right)}{x-3}+\frac{5}{x-3}\)\(=-1+\frac{5}{x-3}\)

Để  \(A\in Z\) thì  \(\left(x-3\right)\inƯ\left(5\right)\)

Ta có: \(Ư\left(5\right)=\left\{-1;1;-5;5\right\}\)

x-3-11-55
x24-28

Vậy \(x\in\left\{-2;2;4;8\right\}\)

21 tháng 8 2017

a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)

\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)

Suy ra  \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)

Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)

b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.

Vậy \(minC=-\frac{1}{2}\) khi x = 0.

1 tháng 2 2017

Để A thuộc Z

=> x + 5 chia hết cho x + 3

x + 3 + 2 chia hết cho x + 3

=> 2 chia hết cho x + 3

=> x + 3 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}

Ta có bảng sau :

x + 31-12-2
x-2-4-1-5
26 tháng 6 2018

a) Để M thuộc Z <=> \(x+2\in B\left(3\right)=\left\{0;3;-3;6;-6;....\right\}\)

                         <=> x = B(3) - 2

b) Để N thuộc Z <=> 7 chia hết cho x-1

                        <=> \(x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Nếu x - 2= 1 thì x = 3

Nếu x - 2 = -1 thì x = 1

Nếu x - 2 = 7 thì x = 9

Nếu x - 2 = -7 thì x = -5

Vậy x = {-5;1;3;9}

a) Để M thuộc Z <=> x+2∈B(3)={0;3;−3;6;−6;....}

                         <=> x = B(3) - 2

b) Để N thuộc Z <=> 7 chia hết cho x-1

                        <=> x−1∈Ư(7)={1;7;−1;−7}

Nếu x - 2= 1 thì x = 3

Nếu x - 2 = -1 thì x = 1

Nếu x - 2 = 7 thì x = 9

Nếu x - 2 = -7 thì x = -5

Vậy x = {-5;1;3;9}

17 tháng 8 2016

\(A=\frac{x-5}{x^2+2}\\ \)

x=3 => \(A=\frac{3-5}{9+2}\\ =>A=\frac{-2}{11}\)

b) A thuộc Z khi \(x-5⋮x^2+2\\ =>\left(x-5\right)\left(x+5\right)⋮x^2+2\\ =>x^2-10⋮x^2+2\\ =>x^2+2-12⋮x^2+2\)

                             =>12chia hết cho x2+2

                             => x2+2 thuộc U(12)

 

17 tháng 8 2016

a)Tại x=3 \(A=\frac{3-5}{3^2+2}=\frac{-2}{9+2}=\frac{-2}{11}\)

b)\(A=\frac{x-5}{x^2+2}=\frac{x^2+2-x^2+3}{x^2+2}=\frac{x^2+2}{x^2+2}-\frac{x^2+3}{x^2+2}=1+\frac{x^2+3}{x^2+2}\)

\(=1+\frac{x^2+2}{x^2+2}+\frac{1}{x^2+2}=1+1+\frac{1}{x^2+2}=2+\frac{1}{x^2+2}\in Z\)

\(\Rightarrow1⋮x^2+2\)

\(\Rightarrow x^2+2\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow x^2\in\left\{-1;-3\right\}\)

\(\Rightarrow x\in\left\{\varnothing\right\}\)

 

15 tháng 2 2017

Để \(\frac{17}{x-2016}\)đạt giá trị lớn nhất thì \(x-2016\)là số nguyên dương nhỏ nhất \(\Rightarrow x-2016=1\)

\(\Rightarrow x=2017\)