\(\frac{x-1}{2x+3}\) 

Tìm x 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm x thuộc Z để A thuộc Z nha mn :)

19 tháng 2 2020

Để \(A\inℤ\) thì \(2A\inℤ\)

Ta có: \(2A=\frac{2\left(x-1\right)}{2x+3}=\frac{2x-2}{2x+3}=\frac{2x+3-5}{2x+3}=1-\frac{5}{2x+3}\)

Vì \(1\inℤ\)\(\Rightarrow\) Để \(2A\inℤ\)thì \(5⋮2x+3\)

\(\Rightarrow2x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị ta có: 

\(2x+3\)\(-5\)\(-1\)\(1\)\(5\)
\(2x\)\(-8\)\(-4\)\(-2\)\(2\)
\(x\)\(-4\)\(-2\)\(-1\)\(1\)

Thay các giá trị của x vào A ta thấy tất cả đều thoả mãn \(A\inℤ\)

Vậy \(x\in\left\{-4;-2;-1;1\right\}\)

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)

            \(\frac{y-2}{3}=\frac{3\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)

\(\Rightarrow\)\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\frac{50-2-6+3}{9}=5\)

Ta có: \(\frac{2x-2}{4}=5\Rightarrow x=11\)

            \(\frac{3y-6}{9}=5\Rightarrow y=17\)

           \(\frac{z-3}{4}=5\Rightarrow z=23\)

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)

=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\) => \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Vậy ...

29 tháng 6 2019

Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=t\)

\(\Rightarrow\frac{3}{2}t=x;\frac{4}{3}t=y;\frac{5}{4}t=z\)

lại có \(x+y+z=49\)

nên \(\frac{3}{2}t+\frac{4}{3}t+\frac{5}{4}t=49\)

\(\Rightarrow\frac{49}{12}t=49\)

do đó \(t=12\)

suy ra \(x=18;y=16;z=15\)

29 tháng 6 2019

Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)<=> \(\frac{6.2x}{6.3}=\frac{4.3x}{4.4}=\frac{3.4z}{3.5}\)

                                                 <=> \(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy phân số bằng nhau ta có : 

\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)

Thay 12 vào từng biểu thức ta có :

\(\frac{12x}{18}=12\Rightarrow12x=12.18\Rightarrow x=\frac{12.18}{12}\Rightarrow x=18\)

\(\frac{12y}{16}=12\Rightarrow12y=12.16\Rightarrow y=\frac{12.16}{12}\Rightarrow y=16\)

\(\frac{12z}{15}=12\Rightarrow12z=12.15\Rightarrow z=\frac{12.15}{12}\Rightarrow z=15\)

Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)

16 tháng 2 2020

a) I 5x+4I +7=26                                                                                   b) 3 I 9-2xI - 17=16

    I 5x+4 I = 26-7                                                                                      3 I 9-2xI=16+17

    I 5x+4 I =19                                                                                           3 I 9-2xI=33

 => 5x+4=19 hoặc 5x+4=-19                                                                       I 9-2xI=33:3=11

     5x = 19-4=15 hoặc 5x=-19-4=-23                                                     => 9-2x=11 hoặc 9-2x=-11 

                                                                                                                   -2x=11-9=2 hoặc -2x=-11+9=-2

                                                                                                                    x=2:(-2)=-1 hoặc x=-2:(-2)=1

               

a) \(\left|5x+4\right|+7=26\)

\(\Rightarrow\left|5x+4\right|=26-7\)

\(\Rightarrow\left|5x+4\right|=19\)

\(\Rightarrow\orbr{\begin{cases}5x+4=19\\5x+4=-19\end{cases}\Rightarrow\orbr{\begin{cases}5x=19-4\\5x=-19-4\end{cases}\Rightarrow}\orbr{\begin{cases}5x=15\\5x=-23\end{cases}\Rightarrow}\orbr{\begin{cases}x=15:5\\x=-23:5\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-4,6\end{cases}}}\)

Vậy \(x\in\left\{3;-4,6\right\}\)

b) \(3\left|9-2x\right|-17=16\)

\(\Rightarrow3\left|9-2x\right|=16+17\)

\(\Rightarrow3\left|9-2x\right|=23\)

\(\Rightarrow\left|9-2x\right|=23:3\)

\(\Rightarrow\left|9-2x\right|=\frac{23}{3}\)

\(\Rightarrow\orbr{\begin{cases}9-2x=\frac{23}{3}\\9-2x=-\frac{23}{3}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{23}{3}+9\\2x=-\frac{23}{3}+9\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{23}{3}+\frac{27}{3}\\2x=-\frac{23}{3}+\frac{27}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{50}{3}\\2x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{50}{3}:3\\x=4:2\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{50}{3}\times\frac{1}{3}\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{50}{9}\\x=2\end{cases}}}\)

Vậy \(x\in\left\{\frac{50}{9};4\right\}\)

Chúc bạn học tốt!

18 tháng 7 2018

a) ta có: \(-3x=5y\Rightarrow\frac{x}{5}=\frac{y}{-3}\)

ADTCDTSBN

có: \(\frac{y}{-3}=\frac{x}{5}=\frac{y-x}{-3-5}=\frac{20}{-8}=\frac{5}{2}\)

=> y/-3 = 5/2 => y = -15/2

x/5 = 5/2 => x = 25/2

KL:...

18 tháng 7 2018

b) ta có: \(\frac{2x}{3}=\frac{3y}{4}\Rightarrow8x=9y\Rightarrow\frac{x}{9}=\frac{y}{8}\)

\(\frac{3y}{4}=\frac{4z}{5}\Rightarrow15y=8z\Rightarrow\frac{y}{8}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{8}=\frac{z}{15}\)

ADTCDTSBN

có: \(\frac{x}{9}=\frac{y}{8}=\frac{z}{15}=\frac{x+y+z}{9+8+15}=\frac{49}{32}\)

=> x/9 = 49/32 => x = ...

...

20 tháng 2 2020

Để A có nghiệm \(\Leftrightarrow A=0\)

\(\Leftrightarrow2x^3+x^2+x-1=0\)

\(\Leftrightarrow2x^3-x^2+2x^2-x+2x-1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+x+1\right)=0\)

Mà : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow x=\frac{1}{2}\)

Vậy : để đa thức A có nghiệm thì \(x=\frac{1}{2}\)

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

21 tháng 4 2020

a)\(\frac{-1}{4}x^2y-\frac{1}{4}x^2y=-\frac{1}{2}x^2y.\)

thay x=1,y=-1 vào ta được:

\(-\frac{1}{2}.1^2.\left(-1\right)=\frac{1}{2}.\)

b)\(3x^2y^3+3x^2y^3=6x^2y^3.\)

thay x=1,y=-1 vào ta được:

\(6.1^2.\left(-1\right)^3=6.1.\left(-1\right)=-6.\)

c) \(6x^3y^4z-4x^3y^4z=2x^3y^4z.\)

Thay x=1,y=-1,z=2 vào ta được:

\(2.1^3.\left(-1\right)^4.2=2.1.1.2=4.\)

d) Thay x=1,y=-1,z=2 vào ta được:

\(1-2.\left(-1\right)^2+2^3=1-2+8=7.\)

Đầy đủ quá rồi đấy. Giữ lời hứa nha

Học tốt