\(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

Câu a:

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2x+2-3\sqrt{x}-1}{x-1}=\frac{2x-3\sqrt{x}+1}{x-1}\)

\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=2-\frac{3}{\left(\sqrt{x}+1\right)}\)

A nguyên khi và chỉ khi \(3⋮\left(\sqrt{x}+1\right)\)

  • TH1 : \(\left(\sqrt{x}+1\right)=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
  • TH2 : \(\left(\sqrt{x}-1\right)=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Câu b : \(\frac{m\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}-2\Leftrightarrow2m\sqrt{x}-m-x+\sqrt{x}+2=0\)

\(\Leftrightarrow x-\left(2m+1\right)\sqrt{x}+m-2=0\)phương trình có hai nghiệm phân biệt khi 

\(\Delta>0\)hay \(\Delta=\left(2m+1\right)^2-\left(m-2\right)4=m^2+9>0\forall m\)

Câu C: để \(A=2-\frac{3}{\sqrt{x}+1}\ge2-\frac{3}{0+1}=-1\)\(\Rightarrow A_{Min}=-1\)khi \(x=0\)

đè hinh như là 6\(\sqrt{x}\) nhi bạn

6 tháng 7 2016

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

6 tháng 7 2016

cảm ơn nhiều

Bài 1

***\(y=-x\)

Cho \(x=0\Rightarrow y=0\)

      \(x=-1\Rightarrow y=1\)

Đồ thị hàm số \(y=-x\)là đường thẳng đi qua hai điểm \(\left(0,0\right);\left(-1;1\right)\)

*** \(y=\frac{1}{2}x\)

Cho \(x=0\Rightarrow y=0\)

       \(x=2\Rightarrow y=1\)

Đồ thị hàm số \(y=\frac{1}{2}x\)là đường thẳng đi qua 2 điểm \(\left(0;0\right)\left(2;1\right)\)

*** \(y=2x+1\)

Cho \(x=0\Rightarrow y=1\)

    \(y=-1\Rightarrow x=-1\)

Đồ thị hàm số \(y=2x+1\)là đường thẳng đi qua 2 điểm \(\left(0;1\right)\left(-1;-1\right)\)

Bài 2 

a, \(P=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-4\left(\sqrt{x}-4\right)-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+4\sqrt{x}-4\sqrt{x}+16-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x-8\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x-4\sqrt{x}-4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)-4\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}-4}{\sqrt{x}+4}\)

b,  Với x = 25

\(\Rightarrow P=\frac{\sqrt{25}-4}{\sqrt{25}+4}=\frac{5-4}{5+4}=\frac{1}{9}\)

c, \(P=\frac{\sqrt{x}-4}{\sqrt{x}+4}=1-\frac{8}{\sqrt{x}+4}\)

Để P thuộc Z thì \(\sqrt{x}+4\inƯ\left(8\right)=\left(-8;-4-2;-1;1;2;4;8\right)\)

\(\sqrt{x}+4=-8\Rightarrow\sqrt{x}=-12VN\)

\(\sqrt{x}+4=-4\Rightarrow\sqrt{x}=-8VN\)

\(\sqrt{x}+4=-2\Rightarrow\sqrt{x}=-6VN\)

\(\sqrt{x}+4=-1\Rightarrow\sqrt{x}=-5VN\)

\(\sqrt{x}+4=1\Rightarrow\sqrt{x}=-3VN\)

\(\sqrt{x}+4=2\Rightarrow\sqrt{x}=-2VN\)

\(\sqrt{x}+4=4\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

\(\sqrt{x}+4=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)

d, Để P nhỏ nhất thì \(\frac{8}{\sqrt{x}+4}\)lớn nhất 

\(\frac{8}{\sqrt{x}+4}\)lớn nhất khi \(\sqrt{x}+4\)nhỏ nhất '

\(\sqrt{x}+4\)nhỏ nhất = 4 khi x = 0

vậy x=0 thì P đạt giá trị nhỉ nhất min p = -1

2 tháng 11 2019

a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

c) để A>1/3 

\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)

\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)

\(\Rightarrow\sqrt{x}+3>3\)

\(\Rightarrow x>0\)