\(\frac{\sqrt{x}}{1+3\sqrt{x}}\)và B = \(\frac{x+3}{x-9}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019
https://i.imgur.com/naNI8CT.jpg

Sao em giỏi vậy ? Toán 9 mà làm đc tài thật >>

5 tháng 7 2017

a)\(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}}{x-9}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}}{x-9}\)

\(=\frac{3x+9\sqrt{x}+3}{x-9}\)

\(=\)...

11 tháng 3 2020

a) \(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{4\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{4\sqrt{x}-12}{x-9}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{x+3\sqrt{x}}{x-9}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}\)

\(=\frac{x-25}{x-9}\)

b) \(P=\frac{A}{B}=\frac{\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}\)

\(=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

\(\sqrt{P}< \frac{1}{3}\Rightarrow\sqrt{\frac{\sqrt{x}-5}{\sqrt{x}+3}}< \frac{1}{3}\)

\(\Rightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}< \frac{1}{9}\Leftrightarrow9\sqrt{x}-45< \sqrt{x}+3\)

\(\Leftrightarrow8\sqrt{x}< 48\Leftrightarrow\sqrt{x}< 6\Rightarrow0\le x< 36\)

11 tháng 3 2020

\(a,\)\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(b,P=\frac{A}{B}=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+5}{\sqrt{x}-3}\)

\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\left(\sqrt{x}-3\right)}{\sqrt{x}+5}=\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}\)

Để \(\sqrt{P}< \frac{1}{3}\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}< \frac{1}{3}\)

\(\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Rightarrow\frac{3\left(2x+3\sqrt{x}-1\right)-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Rightarrow6x+9\sqrt{x}-3-\sqrt{x}-5< 0\)( do \(3\left(\sqrt{x}+5\right)>0\))

\(\Rightarrow6x-8\sqrt{x}-8< 0\Rightarrow3x-4\sqrt{x}-4< 0\)

\(\Rightarrow3x-6\sqrt{x}+2\sqrt{x}-4< 0\)

\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-2\right)+2\left(\sqrt{x}-2\right)< 0\)

\(\Rightarrow\left(\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)< 0\)

Vì \(3\sqrt{x}+2>0\Rightarrow\sqrt{x}-2< 0\)

\(\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy để \(\sqrt{P}< \frac{1}{3}\)thì \(0\le x< 4\)