Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với x > 0
\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1}{x+\sqrt{x}}=\frac{x-1+1}{x+\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
b, Ta có : \(A>\frac{2}{3}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2}{3}>0\Leftrightarrow\frac{3\sqrt{x}-2\sqrt{x}-2}{3\left(\sqrt{x}+1\right)}>0\)
\(\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)
c, \(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+3}{2\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}+2}=\frac{2\sqrt{x}+6}{2\sqrt{x}+2}=1+\frac{4}{2\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+1}\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\sqrt{x}+1\) | 1 | 2 |
\(\sqrt{x}\) | 0 (loại ) | 1 |
x | loại | 1 |
a) Thay x = 25 vào biểu thức A , ta có
\(A=\frac{5-2}{5-1}=\frac{3}{4}\)
b) \(B=\frac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B =\frac{x+1+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B =\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Ta có : \(x=25\Rightarrow\sqrt{x}=5\)
Thay vào biểu thức A ta được :
\(A=\frac{5-2}{5-1}=\frac{3}{4}\)
Vậy với x = 25 thì A = 3/4
b, Với \(x\ge0;x\ne1\)
\(B=\frac{x-5}{x-1}-\frac{2}{\sqrt{x}+1}+\frac{4}{\sqrt{x}-1}\)
\(=\frac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{x-1}=\frac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{x-1}\)
\(=\frac{x+1+2\sqrt{x}}{x-1}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}\pm1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
c, Ta có P = A/B hay \(P=\frac{\sqrt{x}-2}{\sqrt{x}-1}.\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(\sqrt{P}< \frac{1}{2}\)hay \(\sqrt{\frac{\sqrt{x}-2}{\sqrt{x}+1}}< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}-\frac{1}{4}< 0\Leftrightarrow\frac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow3\sqrt{x}-9>0\)do \(4\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow3\sqrt{x}>9\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
a) Vì x>=0 và x2=16
=> x=4 => \(\sqrt{x}=2\)
=> B=\(\frac{2\cdot2+3}{4-1}=\frac{7}{3}\)
b) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\frac{x+2\sqrt{x}+1-x+\sqrt{x}+2\sqrt{x}-2}{x-1}\)
\(=\frac{5\sqrt{x}-1}{x-1}\)
=> \(A\left(x-1\right)=5\sqrt{x}-1\left(đpcm\right)\)
c) \(\frac{A}{B}=\frac{5\sqrt{x}-1}{x-1}\cdot\frac{x-1}{2\sqrt{x}+3}=\frac{5\sqrt{x}-1}{2\sqrt{x}+3}=\frac{\frac{5}{2}\left(2\sqrt{x}+3\right)-\frac{17}{2}}{2\sqrt{x}+3}=\frac{5}{2}-\frac{17}{2\left(2\sqrt{x}+3\right)}\)
=> 17 chia hết cho \(2\sqrt{x}+3\)
\(\Rightarrow2\sqrt{x}+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
ta có bảng
\(2\sqrt{x}+3\) | -17 | -1 | 1 | 17 |
\(\sqrt{x}\) | -1 | 7 | -2 | -7 |
x | \(\varnothing\) | 49 | \(\varnothing\) | \(\varnothing\) |
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
P = A+B
Cộng A và B lại ta được P= /X chia cho /X cộng 1
=> Để P nguyên cần /X chia hết cho /X cộng 1
=>/X =0 => X =0