Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)
Để phân số tối giản thì: \(\frac{21}{n-2}\in Z\)
\(\Rightarrow21⋮n-2\)
\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để \(\frac{n+9}{n-6}\inℕ\)
\(\Rightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Ta có : Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ_{\left(15\right)}\)
\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)
Lập bảng xét các trường hợp :
\(n-6\) | \(1\) | \(3\) | \(5\) | \(15\) |
\(n\) | \(7\) | \(9\) | \(11\) | \(21\) |
Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)
Để \(\frac{n+9}{n-6}\)là số nguyên
\(\Rightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Ta có :\(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)
n-6 | -1 | 1 | -3 | 3 | 5 | -5 | -15 | 15 |
n | 5 | 7 | 3 | 9 | 11 | 1 | -9 | 21 |
![](https://rs.olm.vn/images/avt/0.png?1311)
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : n + 1 chai hết cho n - 3
<=> n - 3 + 4 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
Ta có bảng :
n - 3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
mình làm luội nha sai đừng chửi
A=n-5/n+1 => A=n+1-6/n+1
A=1-6/n+1
để phân số A tối giản thì n+1 thuộc ước -6 =(+-1,+-2,+-3,+-6)
maxA=1 <=>x thược R
bạn lập bản làm cái trên nha