Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 )
\(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(x+z\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{x+z}{ac}=\frac{x+y}{ab}\)
\(\Leftrightarrow\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}\)
Đặt \(\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}=k\)
\(\Rightarrow\left\{\begin{matrix}bc=k\left(y+z\right)=ky+kz\\ac=k\left(x+z\right)=kx+kz\\ab=k\left(x+y\right)=kx+ky\end{matrix}\right.\) (1)
Gỉa sử điều cần chứng minh là đúng ta có
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
\(\Leftrightarrow\frac{y-z}{ab-ac}=\frac{z-x}{bc-ab}=\frac{x-y}{ac-bc}\)
Thế (1) vào biểu thức
\(\frac{y-z}{kx+ky-\left(kx+kz\right)}=\frac{z-x}{ky+kz-\left(kx+ky\right)}=\frac{x-y}{kx+kz-\left(ky+kz\right)}\)
\(\Leftrightarrow\frac{y-z}{ky-kz}=\frac{z-x}{kz-kx}=\frac{x-y}{kx-ky}\)
\(\Leftrightarrow\frac{y-z}{k\left(y-z\right)}=\frac{z-x}{k\left(z-x\right)}=\frac{x-y}{k\left(x-y\right)}\)
\(\Leftrightarrow\frac{1}{k}=\frac{1}{k}=\frac{1}{k}\) ( điều này luôn luôn đúng )
\(\Rightarrow\) ĐPCM
Bài 1:
Ta có: \(\frac{a}{b}=\frac{b}{d}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+d^2}\) (1).
Lại có:
\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)
Từ (1) và (2)
=> S = -5
Ta có \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\) (do \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_{2017}}{a_{2018}}\))
\(\Rightarrow\frac{a_1}{a_2}=-5\) (1) Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}\)(2)
Từ (1) và (2) suy ra \(S=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}=-5\)
b,ấp dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\) = 1
từ \(\frac{a1-1}{100}\) = 1 suy ra :a1-1=100 =) a1=101
........................................................................
từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101
vậy a1=a2=a3=...=a100=101
Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:
a) Tam giác FEC đồng dạng với tam giác FBD
b) Tam giác AED đồng dạng với tam giác HAC
c) Tính BC, AH, AC
\(a_1/a_2 = ... = a_9/a_1 = (a_1+...+a_9)/(a_2+...+a_9 +a_1) =1\)
(a2)2 = a1.a3 => \(\frac{a_1}{a_2}=\frac{a_2}{a_3}\); a23 = a2.a4 => \(\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{\left(a_1\right)^3}{\left(a_2\right)^3}=\frac{\left(a_2\right)^3}{\left(a_3\right)^3}=\frac{\left(a_3\right)^3}{\left(a_4\right)^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{\left(a_1\right)^3+\left(a_2\right)^3+\left(a_3\right)^3}{\left(a_2\right)^3+\left(a_3\right)^3+\left(a_4\right)^3}=\frac{\left(a_1\right)^3}{\left(a_2\right)^3}=\frac{a_1}{a_4}\)
=> đpcm