\(\frac{3n+1}{3n-4}\). Với n \(\in\)số nguyên . Tìm n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

\(A=\frac{3n+1}{3n-4}=\frac{3n-4+5}{3n-4}=1+\frac{5}{3n-4}\)

Suy ra : A có giá trị là số nguyên \(\Leftrightarrow\frac{5}{3n-4}\inℤ\)

\(\Leftrightarrow5⋮3n-4\left(3n-4\inℤ\right)\)

\(\Leftrightarrow3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà 3n - 4 chia 3 dư 2 \(\Rightarrow3n-4=-1;5\Rightarrow n=1;3\)

Vậy \(n=1;3\)

25 tháng 3 2018

1, Ta có : ĐK \(n\ne1\)

a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)

để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)

Ta có bảng sau:

n-1-17-7
n208-6

vậy n=-6, 0,2, 8

b, Ta có ĐK \(n\ne-\frac{1}{3}\)

\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)

để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3

c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)

\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)

để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)

kẻ bảng tìm giá trị n

d,  ĐK : \(n\ne1\)phân tích:

\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)

để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n

2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)

b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)

hay \(2n+3\notinƯ\left(5\right)\)

kẻ bảng tìm giá trị của n

c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất

\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất  và < 0 vì 5 là số dương

nên\(2n+3=-1\Rightarrow n=-2\)

thay n vào tính A vậy max A =7

để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất

\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0 

vậy\(2n+3=1\Rightarrow n=-1\)

thay n vào để tìm min A=-3

22 tháng 6 2018

 Câu a) :

x=-5/3

Câu b) :

GỢI Ý : 3n-5 phải chia hết cho n-4 để A là số nguyên ( đk : n khác 4)

30 tháng 7 2018

\(a,\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)

\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+3x=-4\)

\(\left(\frac{1}{24}-\frac{1}{30}\right).120+3x=-4\)

\(\frac{1}{120}.120+3x=-4\)

\(1+3x=-4\)

\(\Rightarrow3x=-5\)

\(\Rightarrow x=-\frac{5}{3}\)

\(b,A=\frac{3n-5}{n-4}=\frac{3n-12+7}{n-4}=3+\frac{7}{n-4}\)

Để \(A\in Z\Rightarrow7⋮n-4\Leftrightarrow n-4\in\left(1;-1;7;-7\right)\)

\(\Rightarrow n\in\left(5;3;11;-3\right)\)

18 tháng 2 2017

câu a là vô tận

b)Vì \(\frac{3n+4}{n-2}\in Z\Rightarrow3n+4⋮n-2\Rightarrow3n-6+10⋮n-2\)

\(\Rightarrow10⋮n+2\Rightarrow n+2\inƯ\left(10\right)\)

đến đó bạn tự làm nhé

2 tháng 2 2018

a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)

\(\Rightarrow-4< n< 2\)

NHững câu còn lại lm tưng tự!

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

giải giúp mik nha

21 tháng 3 2019

a)ĐKXĐ:n \(\ne\)1

\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)

=>n-1 thuộc Ư(7)={1;-1;7;-7}

=>n ={2;0;8-6}

5 tháng 3 2018

a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:

\(3x+2⋮x+1\)

Ta có: 3x + 2 = 3(x + 1) - 1

mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1

có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1  hay x + 1 \(\in\)Ư(-1) = {1;-1}

Ta có bảng sau:

x+11-1
x0-2

Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2

b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)

\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)

\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)

\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)

\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(=>1⋮d\) \(=>d=1\)

Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.