\(\frac{3}{4}+\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

\(\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+\left(\frac{3}{4}\right)^5-....-\left(\frac{3}{4}\right)^{2010}\)

\(A+\frac{3}{4}A=1-\left(\frac{3}{4}\right)^{2010}\)

\(\frac{7}{4}A=1-\left(\frac{3}{4}\right)^{2010}\)

\(A=\frac{4}{7}\left(1-\left(\frac{3}{4}\right)^{2010}\right)khong\:làsốnguyên\)

 

8 tháng 12 2015

\(A+\frac{3}{4}A=1+\left(\frac{3}{4}\right)^{2011}\)

\(\Leftrightarrow\frac{7}{4}A=1+\left(\frac{3}{4}\right)^{2011}\)

\(\Leftrightarrow A=\left(1+\left(\frac{3}{4}\right)^{2011}\right):\frac{7}{4}=\frac{4}{7}\left(1+\left(\frac{3}{4}\right)^{2011}\right)\)

Vì \(1<1+\left(\frac{3}{4}\right)^{2011}<1+\frac{3}{4}=\frac{7}{4}\)

=> 4/7 < A < 4/7 .7/4 =1  =>  A không là số nguyên

2 tháng 1 2020

Câu hỏi của trần quốc tuấn - Toán lớp 7 - Học toán với OnlineMath

14 tháng 12 2015

tich di mk giai cho

 

12 tháng 12 2018

\(\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}\)

\(\frac{3}{4}A+A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}+1-\frac{3}{4}+\left(\frac{3}{4}\right)^2...\)( Bn tự ghi lại A do máy mình ko đủ độ rộng )

\(\frac{7}{4}A=\left(\frac{3}{4}\right)^{2019}+1\)

\(A=\text{ }\left[\left(\frac{3}{4}\right)^{2019}+1\right]:\frac{7}{4}\)

\(A=\text{ }\frac{\left[\left(\frac{3}{4}\right)^{2019}+1\right].4}{7}\)

=> A là phân số

=> A ko phải số nguyên