![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bn phải lập luận làm sao cả người đọc lẫn người nghe phải hiểu lời bn ns
bn phải nghĩ ra cách chứ mình thấy bài này dẽ lắm
a/ Để A là phân số thì n -1 khác 0. Vây n là các số nguyên khác 1.
b/ A là số nguyên khi n - 1 là ước của 3
* Nếu n - 1 = 1
n = 2
* Nếu n -1 = -1
n = 0
* Nếu n - 1 = 3
n = 4
* Nếu n - 1 = - 3
n = - 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để A nguyên => 5 chia hết cho n - 2
n - 2 thuộc U(5) = {-5 ; -1 ; 1 ; 5}
n - 2 = -5 => n = -3
n - 2 = -1 => n = 1
n - 2 = 1 => n = 3
n - 2 = 5 => n = 7
Vậy n thuộc {-3 ; 1 ; 3 ; 7}
b) \(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\Leftrightarrow\frac{y}{3}-\frac{1}{3}=\frac{1}{x}\)
\(\frac{y-1}{3}=\frac{1}{x}\) <=> (y-1).x = 3
(y-1).x = 1.3 = (-1).(-3)
TH1: y - 1 = 1 => y = 2
=> x = 3
TH2: y - 1 = 3 => y = 4
=> x = 1
TH3: y - 1 = -1 => y = 0
=> x = -3
TH4: y - 1 = -3 => y = -2
=> x = -1
Vậy (x ; y) là (2 ; 3) ; (4 ; 1) ; (0 ; -3) ; (-2 ; -1)
a) Để A là 1 số nguyên thì n-2 \(\in\) Ư(5)={-1;-5;1;5}
Nếu n-2=-1 thì n=1
Nếu n-2=-5 thì n=-3
Nếu n-2=1 thì n=3
Nếu n-2=5 thì n=7
=>n \(\in\) {-3;1;3;7}
b) câu b này mik ko biết làm
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có \(A=\frac{-24}{n}+\frac{17}{n}=\frac{\left(-24\right)+17}{n}=\frac{-7}{n}\)
\(\Rightarrow n\inƯ\left(-7\right)=\left\{-7,-1,1,7\right\}\)
\(\Rightarrow n=-7;n=-1;n=1;n=7\) để A là số nguyên
\(B=\frac{n-8}{n+1}+\frac{n+3}{n+1}=\frac{n-8+n+3}{n+1}=\frac{2n-5}{n+1}=\frac{2n+2-6}{n+1}=2-\frac{7}{n+1}\)
\(\Rightarrow n+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
nếu \(n+1=-7\Rightarrow n=-8\)
\(n+1=-1\Rightarrow n=-2\)
\(n+1=1\Rightarrow n=0\)
\(n+1=7\Rightarrow n=6\)
vậy \(n\in\left\{-8;-2;0;6\right\}\)để B là số nguyên
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Để \(\frac{n+4}{n+1}\in Z\)
\(\Rightarrow n+4⋮n+1\)
\(\Rightarrow n+1+3⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
Lại có : \(n\in Z\Rightarrow n+1\in Z\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4\right\}^{\left(1\right)}\)
Để \(\frac{2}{n-1}\in Z\)
\(\Rightarrow2⋮n-1\)
Lại có: \(n\in Z\Rightarrow n-1\in Z\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1\right\}^{\left(2\right)}\)
Từ (1) và (2) suy ra:
Để \(\frac{n+4}{n+1}\)và \(\frac{2}{n-1}\)đồng thời có giá trị nguyên thì n = 0 ; 2 ( thỏa mãn n là số nguyên )
a) Để \(\frac{n+2}{9}\in Z\)
\(\Rightarrow n+2⋮9\)
\(\Rightarrow n+2⋮3^{\left(1\right)}\)
Để \(\frac{n+3}{6}\in Z\)
\(\Rightarrow n+3⋮6\)
\(\Rightarrow n+3⋮3\)
\(\Rightarrow n⋮3^{\left(2\right)}\)
Từ (1) và (2) suy ra :
Ko tồn tại giá trị nào của n thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
#)Giải :
1.a) Để A là phân số \(\Rightarrow\) -5 không chia hết cho n - 2 \(\Rightarrow n-2\notinƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\notin\left\{\pm3;7;1\right\}\)
b) Để A nguyên \(\Rightarrow-5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{\pm3;7;1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
để A là 1 số nguyên thì n-3 phải thuộc Ư(1)=(-1;1)
vậy n thuộc (2;4)
k mik nha
\(\frac{1}{n-3}\)\(\in\)\(ℤ\)=> 1 \(⋮\)( n-3 )
=> n-3\(\in\){1;-1}
=> n \(\in\){4;2}