Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=\frac{5}{2}+\frac{5}{2^2}+\frac{5}{2^3}+...+\frac{5}{2^{99}}\left(1\right)\)
\(A=\frac{5}{2^2}+\frac{5}{2^3}+\frac{5}{2^4}+...+\frac{5}{2^{100}}\left(2\right)\)
Trừ từng vế của (1) cho (2), ta có được
\(A=\frac{5}{2}-\frac{5}{2^{100}}=\frac{5\cdot\left(2^{99}-1\right)}{2^{100}}>\frac{5\cdot2^{98}}{2^{100}}=\frac{5}{4}>\frac{2}{3}\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
A < 1 - \(\frac{1.}{100}\)
A < \(\frac{99}{100}< \frac{199}{100}\)
=> A < \(\frac{199}{100}\)
b,
S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)
S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)
S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)
S = \(\frac{1.11}{2.10}\)
S = \(\frac{11}{20}\)
1) Đặt dãy trên là \(A\)
Theo bài ra ta có :
\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )
\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
1) Ta có B =
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)= \(\frac{99}{100}\)
=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)
Sai thì thôi chứ mk chỉ làm rờ thôi
Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
Ta có : \(\frac{1}{2}< \frac{2}{3}\); \(\frac{3}{4}< \frac{4}{5}\); \(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N
b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)
c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
Giúp vsssssssssssssssssssssssssssssssssssssssss nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa .........................
THEO MINH LA VAY NE:
A<1/3
mình cũng vậy