\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)Chứng tỏ A < <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)< A=\(\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{99.100}\)

    A=\(1-\frac{1}{100}=\frac{100}{100}-\frac{99}{100}\)=\(\frac{1}{100}<\frac{3}{4}=\frac{4}{400}<\frac{300}{400}\)

Vậy A<3/4

9 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

17 tháng 4 2016

a)đặt B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)

từ (1),(2),(3) =>A<2

b,c tự làm

17 tháng 4 2016

Thế mà ko biết làm

6 tháng 7 2020

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};....;\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)

Ta có : \(\frac{1}{2^2}=\frac{1}{4}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{3.4}\)

....

\(\frac{1}{100^2}=\frac{1}{10000}< \frac{1}{99.100}\)

Suy ra : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

 \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy ta có đpcm 

10 tháng 5 2019

Ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2014^2}\)

\(< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2013\cdot2014}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{2013}-\frac{1}{2014}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)

\(=\frac{3}{4}-\frac{1}{2014}\)

\(< \frac{3}{4}\)

6 tháng 3 2016

de ma sao khong lam dc

6 tháng 3 2016

minh cung dong tinh voi ban la bai nay rattttt de

26 tháng 4 2017

Sorry bạn nha , mình bấm nhầm nút

\(A=\frac{5}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A< \frac{5}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{100}< \frac{5}{4}+\frac{1}{2}=\frac{7}{4}\)

\(\Rightarrow\)\(A< \frac{7}{4}\)

Vậy , \(\frac{5}{4}< A< \frac{7}{4}\left(ĐPCM\right)\)

26 tháng 4 2017

BÀI KHÓ CỦA TRƯỜNG MÌNH ĐÓ THI HK2

GIÚP MÌNH NHÉ!!!!!!THANKS!!!!!!

Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

\(=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)\)

Nhận xét: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

\(\frac{1}{5^2}< \frac{1}{4\cdot5}\)

...

\(\frac{1}{2014^2}< \frac{1}{2013\cdot2014}\)

Do đó: \(\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)< \frac{1}{4}+\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2013\cdot2014}\right)\)

\(\Leftrightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(\Leftrightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)

\(\Leftrightarrow A< \frac{3019}{4028}\)

\(\frac{3019}{4028}< \frac{3021}{4028}=\frac{3}{4}\)

nên \(A< \frac{3}{4}\)(đpcm)

28 tháng 6 2020

cảm ơn <3