\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{99\times100}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

Mk nghĩ A>2

7 tháng 5 2017

\(=\frac{1.2}{99.100}\)

\(=\frac{2}{9900}=\frac{1}{4950}\)

19 tháng 4 2017

\(\Rightarrow A=5\left(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\right)\)

\(\Rightarrow A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=5\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{5x99}{100}=\frac{99}{20}\)

19 tháng 4 2017

\(A=\frac{5}{1}-\frac{5}{2}+\frac{5}{2}-\frac{5}{3}+\frac{5}{3}-\frac{5}{4}+....+\frac{5}{99}-\frac{5}{100}\)

\(A=\frac{5}{1}+\left(-\frac{5}{2}+\frac{5}{2}\right)+\left(-\frac{5}{3}+\frac{5}{3}\right)+\left(-\frac{5}{4}+\frac{5}{4}\right)+...\left(-\frac{5}{99}+\frac{5}{99}\right)+\frac{5}{100}\)

\(A=\frac{5}{1}+0+0+....+0+\frac{5}{100}\)

\(A=\frac{500}{100}+\frac{5}{100}=\frac{205}{100}=\frac{101}{20}\)

Đúng 100%

Đúng 100%

Đúng 100%

19 tháng 4 2016

A = 5(1/1.2 + 1/2.3 +......+ 1/99.100)

A = 5( 1 - 1/2 + 1/2 - 1/3 +........+ 1/99 - 1/100)

A = 5( 1 - 1/100)

A = 5 . 99/100

A = 99/20

** k mk nha!

19 tháng 4 2016

\(\frac{5}{1\times2}+\frac{5}{2\times3}+...+\frac{5}{99\times100}=5\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\right)=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5\times\frac{99}{100}=\frac{99}{20}=4\frac{19}{20}\)

12 tháng 5 2020

Ta có :

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

12 tháng 5 2020

cảm ơn bạn nha

3 tháng 4 2015

Câu A

Ta có (1/2)A  = 1/22 + 1/23 + ... + 1/2100 + 1/2101

=> (1/2)A - A = - (1/2)A = (1/22 + 1/23 + ... + 1/2100 + 1/2101) - (1/2 + 1/22 + ... + 1/2100 )

                                   = 1/2101 - 1/2

=> A = 1 - 1/2100

Câu B

Ta có 1/(1x2) = 1/1 - 1/2

         1/(2.3) = 1/2 - 1/3

  .................................

        1/(99.100) = 1/99 - 1/100

=> B = 1/1 - 1/2 + 1/2 - 1/3 +.... +1/99 - 1/100

        = 1 - 1/100

        =99/100