\(\dfrac{x}{x-2}\) .
Tìm GTNN của bt x.A biết x>2.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

\(A=\dfrac{x}{x-2}=>x.A=\dfrac{x.x}{x-2}=\dfrac{x.x-2.2+4}{x-2}\)

\(\Leftrightarrow x.A=x+2+\dfrac{4}{x-2}=\left(x-2\right)+\dfrac{4}{x-2}+4\)

\(x>2\Leftrightarrow x-2>0\Rightarrow x-2=\sqrt{\left(x-2\right)^2}\)

\(x.A=\left(\sqrt{x-2}-\dfrac{2}{\sqrt{x-2}}\right)^2+8\)

\(\left(\sqrt{x-2}-\dfrac{2}{\sqrt{x-2}}\right)^2\ge0\left\{x=4\right\}\)

GTNN x.A =8 khi x =4

27 tháng 4 2018

1) Áp dụng BĐT bunhia, ta có 

\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)

Dấu = xảy ra <=> a=b=c=1/3

3 tháng 3 2019

\(\dfrac{x^2}{1+x^4}\ge\dfrac{0}{1+x^4}=0\)

GTNN là 0 khi x=0

\(\dfrac{x^2}{1+x^4}\le\dfrac{1}{2}\Leftrightarrow\left(x^2-1\right)^2\ge0\)

GTLN là \(\dfrac{1}{2}\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

24 tháng 3 2017

\(P=\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)

\(P=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+zy}+\dfrac{z^2}{xz+yz}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z\)

24 tháng 3 2017

bài này \(P\ge\dfrac{3}{2}\) là BĐT Nesbitt có vô vàn cách c/m BĐT này từ cách cấp 1-> cấp 3 bn cần thì IB

còn đây là cách c/m tổng quát có thể áp dụng cho mọi bài cả bài này Here

10 tháng 5 2019

Câu c tương tự câu a. Chia ra 2 trường hợp để giải.

Còn một cách giải nhanh hơn dễ hơn đó là lập bảng xét dấu. Nhưng cái này lên lớp 10 sẽ được tìm hiểu rỏ hơn. Chúc bạn may mắn.

10 tháng 5 2019

a) \(\frac{2}{x-1}>1\Leftrightarrow\frac{2}{x-1}-1>0\Leftrightarrow\frac{3-x}{x-1}>0\)

Chia làm 2 trường hợp

TH1: Cả từ và mẩu đều dương.

\(\left\{{}\begin{matrix}3-x>0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>1\end{matrix}\right.\)

Vậy .......

TH2: Cả tử và mẫu đều âm.

\(\left\{{}\begin{matrix}3-x< 0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\x< 1\end{matrix}\right.\)( vô nghiệm.)