![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)(Tách bớt phần nguyên)
=> Để A có GTNN thì \(\frac{5}{3n+2}\)phải đạt giá trị lớn nhất.
=> \(3n+2\)có GTNN => n có GTNN. Mà \(n\in N\Rightarrow n=0\)
Thay n=0 vào A; ta được:
\(A=2-\frac{5}{3.0+2}=2-\frac{5}{2}=-\frac{1}{2}\).
Vậy A có GTNN là -1/2 khi n=0.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(A=\frac{6n-1}{3n+2}\)
\(A=\frac{6n+4-5}{3n+2}\)
\(A=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Mà để \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất
\(\Rightarrow\frac{5}{3n+2}\)phải có giá trị lớn nhất
Mà để \(\frac{5}{3n+2}\)có giá trị lớn nhất thì \(3n+2\)phải là số nguyên âm nhỏ nhất và là ước của 5
\(\Rightarrow3n+2=-1\)để \(\frac{5}{3n+2}\) bằng -5
\(\Rightarrow3n=-3\)
\(\Rightarrow n=-1\)
Vậy n=-1 thì A có giá trị nhỏ nhất
![](https://rs.olm.vn/images/avt/0.png?1311)
A có GTNN \(\Leftrightarrow\)\(\dfrac{5}{3n+2}\)có GTLN \(\Leftrightarrow\)3n + 2 là số nguyên dương nhỏ nhất
\(\Leftrightarrow\)n=0
Lúc đó A= \(\dfrac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để A có giá trị nguyên
suy ra (6n - 1) chia hết cho (3n + 2)
Vì (3n + 2) chia hết cho (3n + 2) suy ra 2(3n + 2) chia hết cho (3n + 2) hay (6n + 4) chia hết cho (3n + 2)
suy ra [(6n - 1) - (6n + 4)] chia hết cho (3n + 2)
(6n - 1 - 6n - 4) chia hết cho (3n + 2)
5 chia hết cho (3n + 2)
hay 3n + 2 thuộc Ư(5). Mà Ư(5) thuộc {1; -1; 5; -5}
Ta có bảng sau:
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 ko thuộc Z (loại) | -1 | 1 | -7/3 ko thuộc Z (loại) |
Vậy n = 1 hoặc n = -1
b) Ta có: A=6n - 1/3n + 2 = 6n + 4 - 5/3n + 2 = 2(3n + 2) - 5/3n + 2 = 2 - 5/3n + 2
Để A min suy ra 5/3n + 2 max
Vì 5 ko thay đổi suy ra 3n + 2 min và 5/3n + 2 là số âm nhỏ nhất
Suy ra 3n + 2 là số âm lớn nhất nên 3n + 2 = -1
3n = -1 - 2 = -3
n = -3 : 3 = -1
Vậy min A = -7 tại n = -1
Nhớ k mình đúng nhé!!!Thanks các bạn nhiều
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có :
\(Q=\dfrac{6n-1}{3n+2}=\dfrac{2\left(3n+2\right)-5}{3n+2}=2-\dfrac{5}{3n+2}\)
Để Q có giá trị nguyên thì :
\(5⋮3n+2\)
\(\Leftrightarrow3n+2\inƯ\left(5\right)\)
Ta có bảng :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\dfrac{-1}{3}\) | \(-1\) | \(1\) | \(\dfrac{-7}{3}\) |
\(Đk\) \(n\in Z\) | loại | tm | tm | loại |
Vậy \(n\in\left\{-1;1\right\}\) là giá trị cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
a,Điều kiện: \(3n+2\ne0\Rightarrow n\ne\dfrac{-2}{3}\)
Ta có:\(A=\dfrac{6n-3}{3n+2}=\dfrac{6n+4-7}{3n+2}=2-\dfrac{7}{3n+2}\)
Do 2 nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{3n+2}\) nguyên => 3n+2 là ước của 7 \(\Rightarrow3n+2\in\left\{\pm1;\pm7\right\}\)
+) Với 3n+2=1 => 3n=-1 => \(n=-\dfrac{1}{3}\) (ko thỏa mãn)
+) Với 3n+2=-1 => 3n=-3 => n=-1 (thỏa mãn)
+) Với 3n+2=7 => 3n=5 => n=3/5 (ko thỏa mãn)
+) Với 3n+2=-7 => 3m=-9 => n=-3 (thỏa mãn)
Vậy \(n\in\left\{-1;-3\right\}\)
b, Do \(A=2-\dfrac{7}{3n+2}\) => để A đạt GTNN thì \(\dfrac{7}{3n+2}\) lớn nhất. Vì 7 dương nên để \(\dfrac{7}{3n+2}\) lớn nhất thì 3n+2 phải có giá trị dương nhỏ nhất.
Mà \(n\in Z\) => n=0
Với n=0 thì \(A=2-\dfrac{7}{3.0+2}=2-3,5=-1,5\)
Vậy minA=-1,5 khi n=2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{6n-1}{3n+2}=\frac{5}{4}\Rightarrow4\left(6n-1\right)=5\left(3n+2\right)\)
=>24n-4=15n+10
=>24n-15n=10+4
=>9n=14
=>n=\(\frac{14}{9}=1\frac{5}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phàn a) dễ oy , tự lm nhé !
b) Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A_{min}\Leftrightarrow\frac{5}{3n+2}max\)
Xét 3n+2>0 =>3n>-2=>n>\(\frac{-2}{3}\)=> n >hoặc = 0(vì n \(\in\)Z )=>\(\frac{5}{3n+2}\)>0 (1)
Xét 3n+2<0 => 3n<-2 =>n<\(\frac{-2}{3}\)=>\(\frac{5}{3n+2}\)<0 (2)
từ (1) và (2) và do \(\frac{5}{3n+2}\)max => ta chọn trường hợp (1)
p/s \(\frac{5}{3n+2}\)dương có tử số dương ko đổi nên A bé nhất khi mẫu số bé nhất \(\Leftrightarrow\)n nhỏ nhất \(\Leftrightarrow\)n=0
Vậy \(A_{min}=\frac{-1}{2}\Leftrightarrow n=0\)