\(\dfrac{2\sqrt{x}+4}{\sqrt{x}+3}\) . Tìm x để A là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{\sqrt[2]{x}+4}{\sqrt{x}+3}\)

Ta gọi  \(\sqrt{x}=a\)

=> Ta thay \(\sqrt{x}=a\), từ đó ta có:

\(A=\dfrac{a+4}{a+3}\) \(\Rightarrow A=\dfrac{a+3+1}{a+3}\Leftrightarrow A=1+\dfrac{1}{a+3}\)\(\left(\dfrac{1}{a+3}\inℤ\right)\)

\(\Rightarrow1⋮\left(a-3\right)\Rightarrow a+3\inƯ\left(1\right)\)

mà \(Ư\left(1\right)\in\left\{\pm1\right\}\)

\(\Rightarrow a=\pm1\Leftrightarrow\sqrt{x}=1\left(x>0\right)\)

 

TC
Thầy Cao Đô
Giáo viên VIP
24 tháng 11 2022

$A = \dfrac{2\sqrt x + 6 - 2}{\sqrt x+3} = 2 - \dfrac2{\sqrt x + 3}$.

Để $A$ nhận giá trị nguyên thì $\sqrt x + 3 \in$ Ư$(2)$.

Mà $\sqrt x \ge 0$ với mọi $x$ nên $\sqrt x + 3 \ge 3$ với mọi $x$

Nên không có giá trị nào của $x$ thỏa mãn.

 

17 tháng 1 2020

1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Lập bảng:

\(\sqrt{x}-3\)   1  -1  2   -2   4   -4
\(\sqrt{x}\)  4  2  5  1  7 -1 (loại)
x 16 4 25 1 49 

Vậy ....

17 tháng 1 2020

2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Do x2 + 3 \(\ge\)3  \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)

=> \(1+\frac{12}{x^2+3}\le5\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Max B = 5 khi x = 0

29 tháng 2 2020

ua, x,y,z o dau vay ban

29 tháng 2 2020

\(\frac{1}{3}-|\frac{5}{4}-2x|=\frac{1}{4}\)

\(\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\)

\(\Leftrightarrow\orbr{\begin{cases}Th1:\frac{5}{4}-2x=\frac{7}{12}\\Th2:\frac{5}{4}-2x=-\frac{7}{12}\end{cases}}\)

\(\Leftrightarrow Th1:\frac{5}{4}-2x=\frac{7}{12}\)                                                 \(\Leftrightarrow Th2:\frac{5}{4}-2x=-\frac{7}{12}\)                      

                 \(\Leftrightarrow2x=\frac{7}{12}+\frac{5}{4}\)                                           \(\Leftrightarrow2x=-\frac{7}{12}+\frac{5}{4}\)

                  \(\Leftrightarrow2x=\frac{11}{6}\)                                                      \(\Leftrightarrow2x=\frac{2}{3}\)

                  \(\Leftrightarrow x=\frac{11}{12}\)                                                         \(\Leftrightarrow x=\frac{1}{3}\)

P/s : Mình làm bừa ạ nếu kh đúng xin mọi người chỉ thêm ~~

25 tháng 11 2019

Ta có:

A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> 4 \(⋮\)\(\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

<=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

Do \(\sqrt{x}\ge0\) => \(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=> \(x\in\left\{16;4;25;1;49\right\}\)

Vậy ...

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1\)\(+\frac{4}{\sqrt{x}-3}\)

ĐKXĐ: \(x\in R\)

Vì \(x\in Z \Rightarrow \sqrt{x}-3\in Z\)

Để A là một số nguyên <=>  \(\frac{4}{\sqrt{x}-3}\in Z\)

                                     <=>  \(4⋮\sqrt{x}-3\)

                                     <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1,2,4,-1,-2,-4\right\}\)mà \(\sqrt{x}-3\ge-3\forall x\)

                                     <=>\(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)

                                      <=> \(x\in\left\{16;25;49;4;1\right\}\)

18 tháng 1 2018

Ta có : \(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\frac{5}{\sqrt{x}-2}\)

Mà B nguyên nên \(\frac{5}{\sqrt{x}-2}\in Z\)hay \(\left(\sqrt{x}-2\right)\inƯ\left(5\right)\)

\(\sqrt{x}-2\)1-15-5
\(\sqrt{x}\)317-3
 \(x\)9149 \(\varnothing\)

Vậy \(x\in\left(1;9;49\right)\)

18 tháng 1 2018

\(B=\frac{\sqrt{x}+3}{\sqrt{x}-2}\)  \(ĐKXĐ:x\ne4;x\ge0\)

\(B=\frac{\sqrt{x}-2+5}{\sqrt{x}-2}\)

\(B=1+\frac{5}{\sqrt{x}-2}\)

để \(B\in Z\)thì \(x\in Z\)

mà \(1\in Z\forall R\) nên \(\frac{5}{\sqrt{x}-2}\in Z\)

\(\Leftrightarrow\sqrt{x}-2\inƯ\left(5\right)\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{\pm1;\pm5\right\}\)

mà \(x\ge0\) nên \(\sqrt{x}-2\in\left\{1;5\right\}\)

+  \(\sqrt{x}-2=1\)  \(\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)  (thỏa mãn )

\(\sqrt{x}-2=5\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\) ( thỏa mãn)

vậy \(x\in\left\{9;49\right\}\) thì \(B\in Z\)

7 tháng 1 2018

mình đang cần gấp

7 tháng 1 2018

huhukhocroi