\(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

\(A=\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)

\(\Leftrightarrow\dfrac{1}{x^2+2x+x+2}+\dfrac{1}{x^2+2x+3x+6}+\dfrac{1}{x^2+3x+4x+12}+\dfrac{1}{x^2+4x+5x+20}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\left(1\right)\)

a, ĐKXĐ của pt : ​

\(\left\{{}\begin{matrix}x+1\ne0\\x+2\ne0\\x+3\ne0\\x+4\ne0\end{matrix}\right.\)\(x+5\ne0\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne-2\\x\ne-3\\x\ne-4\end{matrix}\right.\)\(x\ne-5\)

b, pt(1) \(=\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)

\(=\dfrac{1}{x+1}-\dfrac{1}{x+5}\)

\(=\dfrac{x+5-x-1}{\left(x+1\right)\left(x+5\right)}\)

\(=\dfrac{4}{x^2+6x+5}\)

c, Thay x = 3 vào bt trên ,có :

\(\dfrac{4}{3^2+6.3+5}=\dfrac{4}{32}=\dfrac{1}{8}\)

Vậy tại ..............

d, Để \(A=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{4}{x^2+6x+5}=\dfrac{1}{3}\)

\(\Leftrightarrow x^2+6x+5=12\)

\(\Leftrightarrow x^2+6x-7=0\)

\(\Leftrightarrow x^2-7x+x-7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(t/m\right)\\x=-1\left(kot/m\right)\end{matrix}\right.\)

Vậy x = 7 thì A = 1/3

4 tháng 3 2018

Mình giải được rồi, cảm ơn bạn. Nhưng câu d đáp án sai rồi nhé. Do chỗ bạn tách 6x ra -7x + x ấy, đúng ra là 7x - x nhé! Đáp án có 2 nghiệm là 1 và -7 nha bạn.

3 tháng 1 2019

Đcm học ngu k biết xài caskov

7 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)

b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{x+4}{6}\)

c) Để P = 0

\(\Leftrightarrow\frac{x+4}{6}=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Để P = 1

\(\Leftrightarrow\frac{x+4}{6}=1\)

\(\Leftrightarrow x+4=6\)

\(\Leftrightarrow x=2\)

d) Để P > 0

\(\Leftrightarrow\frac{x+4}{6}>0\)

\(\Leftrightarrow x+4>0\)(Vì 6>0)

\(\Leftrightarrow x>-4\)

2 tháng 12 2018

a/ \(\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}\)

\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+4}\)

Vậy..

b/ \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)

\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)

\(=\dfrac{1}{x+1}-\dfrac{1}{x+5}\)

Vậy..

a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

=>(x+4)(x+7)=54

=>x^2+11x+28-54=0

=>(x+13)(x-2)=0

=>x=-13 hoặc x=2

b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)

=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)

=>x^2+6x+5=12

=>x^2+6x-7=0

=>(x+7)(x-1)=0

=>x=-7 hoặc x=1

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

5 tháng 3 2017

b) \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{1}{18}\\< =>\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ < =>\dfrac{1}{x+1}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ quyđồngmẫuvàkhửmẫu\\ x^{2^{ }}+6x-27=0\\ giảipttìmđược:x=3;x=-9\)

5 tháng 3 2017

a) \(\frac{x-2015}{1}+\frac{x-2014}{2}+\frac{x-2013}{3}+...+\frac{x-1}{2015}+\frac{x}{2016}=0\\ \Leftrightarrow\frac{x-2015}{1}-1+\frac{x-2014}{2}-1+...+\frac{x-1}{2015}-1+\frac{x}{2016}-1=-2016\)

\(\Leftrightarrow\frac{\left(x-2016\right).1}{1}+\frac{\left(x-2016\right).1}{2}+\frac{\left(x-2016\right).1}{3}+...+\frac{\left(x-2016\right).1}{2015}+\frac{\left(x-2016\right).1}{2016}=-2016\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=-2016\)

tới đây mình chịu. mình nghĩ là phương trình bạn cho là bằng 2016 chứ, như thế giải mới được, còn như này thì mình bó tay

b)

\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\\ \Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)

\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\\ \Rightarrow\left(x+2\right)\left(x+6\right)=32\)

\(\Leftrightarrow x^2+8x+12-32=0\\ \Leftrightarrow x^2+8x-20=0\\ \Leftrightarrow\left(x+10\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+10=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-10\\x=2\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={-10;2}

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

27 tháng 11 2017

a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)

Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)

\((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)

\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)

\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4

Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4