Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{100}}\)
\(2^2A=2^2\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{100}}\right)\)
\(4A=1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{98}}\)
\(4A-A=\left(1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{100}}\right)\)\(3A=1-\dfrac{1}{2^{100}}\)
\(A=\dfrac{1-\dfrac{1}{2^{100}}}{3}\)
\(A=\dfrac{1}{3}-\dfrac{\dfrac{1}{2^{100}}}{3}< \dfrac{1}{3}\)
Vậy \(A< \dfrac{1}{3}\)
Bài 2 :
\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)
\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)
\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)
Đặt :
\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)
\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)
\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)
\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow3S< \dfrac{4}{3}\)
\(\Leftrightarrow S< \dfrac{4}{9}\)
\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)
\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)
\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)
\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)
\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)
Đặt:
\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)
\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)
\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)
\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)
\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)
Thay M vào A ta có:
\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)
\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)
a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrowđpcm\)
d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)
\(\Rightarrowđpcm\)
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\Rightarrowđpcm\)
a) \(P=\frac{1+2}{1^2.2^2}+\frac{2+3}{2^2.3^2}+...+\frac{9+10}{9^2.10^2}\)
\(P=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\) ( rút gọn số mũ nhé )
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)
\(P=1-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
Vì \(\frac{9}{10}< 1\Rightarrow P< 1\) (đpcm)
b) Chút nữa mình làm nhé ^^
b)
\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
Ta so sánh giữa A và Q.
\(\frac{1}{1.2}>\frac{1}{3};\frac{1}{2.3}>\frac{1}{3^2};\frac{1}{3.4}>\frac{1}{3^3};....;\frac{1}{100.101}>\frac{1}{3^{100}}\)
\(\Rightarrow Q< A\)
Ta lại tiếp tục so sánh A và \(\frac{1}{2}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\Leftrightarrow A< \frac{1}{2}\)
Ta được:
\(Q< A< \frac{1}{2}\Leftrightarrow Q< \frac{1}{2}\)
\(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\Rightarrow4S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}+......-\dfrac{1}{2^{2002}}\Rightarrow4S+S=5S=1-\dfrac{1}{2^{2004}}< 1\Rightarrow S< 0,2\left(\text{đpcm}\right)\)
1.
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}< 1\)
2.
\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)
Ta có:
\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)
\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)
\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)
\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)
Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow2^2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\)
\(\Rightarrow2^2A-A=\left(1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\right)\)
\(\Rightarrow3A=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{2^{100}}}{3}< \dfrac{1}{3}\)(đpcm)